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Abstract
This paper proposes a Linux kernel-user API called Flow API that
can be used to leverage hardware device flow tables. One goal of
this  API  is  to  be  generic  enough  to  support  a  wide  range  of
networking hardware and use cases. We believe this is essential to
a  successful  API  on  an  operating  system  that  supports  host
network interface, top of rack switch devices and everything in
between. In this paper we outline the insights that have guided the
development of this API as well as illustrate how the API can be
used by developers to write useful programs that can work across
a wide array of devices without resorting to vendor specific  code.
To  enable  this  API  we  have  readily  available  C  code  that
implements  the  API  on  top  of  rocker,  an  emulated  switch
supported   by  Linux.  Additionally  we  provide  a  user  space
package to illustrate usages of the API which is also available.
Finally  we  want  to  highlight  some  ongoing  work  and  open
problems under development.
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 Introduction
The  user-kernel  API  called  FlowAPI  proposed  here
addresses  a  notable  gap  presented  to  hardware  driver
developers  and  user  space  application  developers  when
attempting  to  use  flow  tables  in  hardware  devices.
Currently,  developers  have  two  options  in  Linux  (a)
Ethtool or (b) implement/use hardware specific APIs. The
Ethtool model provides a simple view of the hardware with
many limitations. Some of the notable limitations are only
supporting a single  ingress  table,  limited match support,
limited number and type of actions and lack of capability
queries. Additionally Ethtool uses a locking scheme which
is likely restrictive for applications that want to modify the
hardware  state  quickly  possibly  thousands  of  times  per
second.  On  the  other  side  of  the  spectrum  hardware
specific  APIs  often  packaged  as  software  developer  kits
(SDKs)  historical  released  by  hardware  vendors  for
switching  silicon  typically  expose  much  more  of  the
hardware  to  the  user  at  the  expense  of  portability.  In
general  SDK's  only support  a specific  vendor's  hardware
requiring developers  to  write  vendor  specific  code.  Also
SDK's tend to be released with user-mode drivers and its
unclear  how  in-kernel  drivers  would  export  this
functionality except through proprietary and in this authors
opinion ugly vendor specific Netlink or IOCTL  interfaces.

When defining the Flow API we attempted to resolve the
limitations  of  Ethtool  and  maintain  a  vendor  neutral
implementation.  Towards  this  goal  we  identified  some
basic requirements:

 The  API  should  be  flexible  enough  to  support
many different hardware pipelines

 The  API  incorporates  new  packet  types  and
actions easily. Preferably at run time

 The API should allow user space applications to
configure  the  hardware  pipeline  and  query  the
hardware for resource constraints

 The API should be vendor neutral

To support  this the Flow API uses a  set  of API calls to
expose hardware capabilities including supported headers,
supported  actions,  supported  tables,  header  graphs,  and
table graphs. Using this consumers of the API can create a
usable  model  of  most  hardware  devices  we  have  been
working  with.  Then  a  set  of  API  calls  to  configure  the
device can be used to add rules, delete rules, create tables,
and destroy tables.

In  the following sections we will  show how a hardware
model  can  be  generated  from  the  API,  how  it  can  be
configured, and then finally provide some basic examples
showing how programs can  use  this  to  handle  hardware
devices with different capability sets. The reader may use
the publicly available source code as a reference.[1][2]

Device Model

The Flow API capability queries consists of a set of API
calls built on top of the Netlink infrastructure. Netlink was
chosen  primarily  because  it  provides  a  backwards
compatible way to extend the API as needed. Additionally,
we  expect  Netlink  can  support  the  performance
requirements of most applications. The user API to query
capabilities  consists of the following commands:

 net_flow_table_cmd_get_headers
 net_flow_table_cmd_get_header_graph
 net_flow_table_cmd_get_actions
 net_flow_table_cmd_get_tables
 net_flow_table_cmd_get_table_graph
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Using these commands a model of the hardware pipeline
can be created.

Supported Headers
The  packet  types  supported  by  the  model  are  queried
through  the  net_flow_table_cmd_get_headers and
net_flow_table_cmd_get_header_graph API  commands.
The  first  command  net_flow_table_cmd_get_headers
describes the supported packet headers as an ordered set of
fields.  Where  each  field  is  described  with  a  unique
identifier  and  bit  width.  For  example  a  802.1Q  VLAN
header is described here,

vlan { pcp:3 cfi:1 vid:12 ethertype:16 }

The  user  friendly  strings  are  only  provided  as  a
convenience  and  are  not  required.   If  the  user  friendly
strings  are  not  provided the unique identifier  which is a
32bit unsigned integer is used. Changing the user visible
strings does not change the header layout for example,

foo { bar:3 bax:1 bay:12 baz :16 }

describes exactly the same packet header. This is just one
example of a header. The query command returns an array
of headers similar to the one illustrated above that expose
the complete header space supported by the devices. This
would  typically  include  definitions  for  IPv4,  IPv6,
TCP/UDP, VXLAN, etc. Each of these definitions can be
packed/unpacked into Netlink messages and passed from
the  hardware  driver  to  the  user  space  application.  The
Netlink definitions can be found in the source code in the
UAPI  file  ./include/uapi/linux/if_flow.h.  Additional
Netlink packing  and  unpacking  helper  functions provide
program  friendly  structures  that  hardware  drivers  can
provide and programs can consume. In kernel consumers

of  the  API  can  use  the  data  structures  directly.  These
structures  are  not  defined  as  part  of  the  user-kernel
interface but currently the same structures are being used
in  both  the  kernel  and  user  space  code.  By  not  being
embedded in the user-kernel API the structures can evolve
independently.

With the above commands the set of supported headers can
be exposed but the supported combination of headers still
needs to be queried to get  a complete view of hardware
header  support.  This  is  relevant  even  on  common  host
network  interfaces.  Considering  the  802.1Q  VLAN
example used above some hardware may support stacked
VLANs sometimes referred to as Q'in'Q others may only
support offloads on the outer VLAN and still others may
support 3 or more stacked VLAN headers. To expose this
dependency  and  others  like  it  the
net_flow_table_cmd_get_header_graph API  command  is
used to return a graph of the supported headers. 

Illustration  1  provides  an  example  graph  of  a  simple
device. The graph has a root node which is denoted with
the user  friendly string Ethernet.  Following the Ethernet
header it expects either a 802.1Q VLAN header or an IPv4
header.  Any  other  headers  will  not  be  supported.
Continuing through the graph shows support for UDP/TCP
and  VXLAN.  We  note  that  stacked  VLANs  are  not
supported by the single VLAN node.

The reader may also note fields that are not connected to
the graph. In Illustration 1 there is a routing metadata node
which is not connected. Metadata is used by the hardware
for  many  reasons  some  common  examples  are  to  pass
information  between  tables  or  encode  information  about
the packet that is outside the table pipeline. This may be
used to indicate the port the packet was received on, the
queue it was received in, etc. Metadata referencing external
information such as the two listed examples will need to be
standardized.  If  the  metadata  is  only  used  to  pass
information  between  tables  it  may  be  inferred  from the
device  model.  However  “knowing”  when  this  is  a  safe
assumption is not knowable so we expect all metadata will
need to be standardized.

Illustration 1: Example header graph

6: dec_ttl (void)

7: set_dst_mac (u48 mac)

8: push_vlan (u16 vlan)

9: drop(void)

Illustration 2: Action Signatures
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Denoting headers and header graphs this way provides a
flexible mechanism for devices to expose packet headers in
a way that consumers of the API can query. After obtaining
the headers and header graph users can search for support
of any packet headers they will require. To do this we only
need to compare a proposed header graph and headers with
the device. If the proposed header graph is a subgraph of
the device then it can be supported. This is similar to other
subsystems in Linux such as netfilter and traffic classifiers
like u32 that use length, offset tuples to describe packets.
[3,4] In our opinion this is more elegant then reporting bit
masks of supported fields and is also easier to extend.

Supported Actions
In addition to headers and header graphs hardware devices
also  support  a  set  of  actions  that  can  be  applied  to  the
packets and associated metadata.  To query for supported
actions the net_flow_table_cmd_get_actions command can
be used.

Actions are  expressed as a list  of  n-tuples.  Each n-tuple
includes  a  unique  identifier,  an  optional  string  key,  a
signature and an action primitive list. In Illustration 2 an
excerpt from an emulated device is shown. This particular
excerpt is from the CLI included in the user space package
it shows the unique identifiers and action signatures.

Currently  the  API  supports  a  small  subset  of  possible
action  primitives.  We expect  to  expand  this  as  needed.
Although it is important the set continue to be a minimal
set  so  that  consumers  of  the  API  can  evaluate  the
equivalence  of  actions.  The  current  API  supports  these
actions primitives

 set_field (field_id, value)
 push_header(header_id, value)
 pop_header(header_id)

 inc_field(field_id), dec_field(field_id)
 drop(void)

 
To  see  where  this  is  relevant  consider  a  device  that
supports an action with signature,

route*(u48 DMAC, u16 VLAN)

Querying the device may result in the following action 
primitive specification,

set_field (DMAC_FIELD, DMAC)
push_header(VLAN_HEADER, VLAN)
dec_field(IPV4_TTL)

as it may be possible to guess from the above description 
this action will set the destination MAC address, push a 
VLAN header on the packet and decrements the IPV4 
TTL. Referencing Illustration 2 the same set of primitives 
(although we do not list the primitives in Illustration 2 we 
hope they can be inferred) can be achieved with this chain 
of actions

set_dst_mac(DMAC); push_vlan(VLAN); dec_ttl(void)

Using the primitives lists and signatures a consumer of the 
API can normalize the action sets across multiple devices. 
Its worth noting however that this will, in most cases need 
to be done up front  at or near initialization time as we do 
not expect the computation can be done at runtime without 
impacting performance. For example we are experimenting
with normalizing both actions and headers when devices 
are brought online.

At this point we should point out that these concepts have 
appeared in multiple places before we happily borrowed 
them to be used here. Some examples we are aware of 

tcam: 1 src 1 apply 1 size 4096

   matches:

field: ethernet [dst_mac (mask) src_mac (mask) ethertype (mask)]

field: vlan [pcp (mask) cfi (mask) vid (mask) ethertype (mask)]

field: ipv4 [dscp (mask) ecn (mask) ttl (mask) protocol (mask) dst_ip (lpm) src_ip (lpm)]

field: tcp [src-port (mask) dst-port (mask)]

field: udp [src-port (mask) dst-port (mask)]

   actions:

1: set_egress_port (u32 egress_port)

3: set_dst_mac (u48 mac_address)

4: set_src_mac (u48 mac_address)

5: trap()

Illustration 3: Table Definition
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include the work by the Netfilter team, the traffic classifier 
“u32” and ongoing work at p4.org.[4] The team at p4.org 
for example has defined a more complete set of action 
primitives.

Tables and Table Graphs
The final piece to building the device model is to query the
device  for  the  tables  and  the  table  graph.  Each  table  is
identified  by  a  unique  identifier  and  an  optional  user
friendly string. Tables consist of a set of supported actions
and a  set  of  supported  matches.  Illustration  3  shows an
example  of  a  possible  table  returned  from  a
net_flow_table_cmd_get_tables query.

In addition to matches and actions tables may have various
table attributes. At the time this was written supported table
attributes include size, source, and apply action group. Size
is used to indicate the total number of rules that can fit into
a table. In the Future Work section we will discuss possible
refinements of the size attribute for tables where rules may
consume different amount of space in the table depending
on the match/actions used. Source is used to indicate where
multiple tables may be using the same physical resources.
This  will  also  be  discusses  in  more  detail  later.  Apply
action group denoted by the apply value in Illustration 3 is
used in combination with the table graph in Illustration4 to
indicate when actions are applied to packets. Tables with
the same apply value will always apply actions at the same
time. Similarly actions with different  apply values will be
applied  in  serial.  For  a  concrete  example  Illustration  3
shows  a  table  labeled  tcam with  an  apply  group  of  '1'.
Assuming there is another table tcam2 with an apply group
of '2'. In this case we can assume any actions from the table
labeled tcam are already applied when the packet traverses
the table labeled tcam2. However if both tables,  tcam and
tcam2, have an  apply group value of '1' then any actions
from tcam will not be seen by tcam2. One case where this
is relevant is where we have actions to both set a field and
match  on  it.  In  this  case  depending  on  the  apply  group
value we may miss or match a rule.

The match fields give the supported header and associated
fields along with the mask types  supported by the field.
Currently three types are supported,  mask,  longest prefix,

and exact. As noted before the interface is designed to be
extended so if another mask type is needed it can be easily
added.

As noted above a device may support multiple tables (in
fact this is the common case for many classes of devices!)
and in order to effectively program such a device we need
to show how packets are sent through the set of tables. The
net_flow_table_cmd_get_table_graph  as may be expected
is used to provide this. The command will return a graph
structure where each node is a table and the edges are the
packet  transition  qualifiers.  For  shorthand  we  use
unlabeled  edges  to  indicate  any  unmatched  packets.
Illustration  4  shows  one  possible  table  graph.  Here  we
show that  Ethernet  multicast  packets  are  sent  to  a  table
labeled bridge and and all other packets are sent to a table
labeled ucast_routing. 

Using this along with a the other commands to query the
tables,  matches  and  actions  consumers  of  the  API  can
construct a functional model of the device pipeline.

Configuration

Adding and Removing Rules
Once consumers  of the API have queried the device the
next item is to program rules into the tables. The following
API commands allow this:

 net_flow_table_cmd_set_rule
 net_flow_table_cmd_del_rule
 net_flow_table_cmd_get_rule

The  net_flow_table_cmd_set_rule encodes  the  following
structure into Netlink messages,

struct net_flow_rule {
u32 table_id;
u32 uid;
u32 priority;
struct net_flow_field_ref *matches
struct net_flow_action *actions}

Illustration 4: Table Graph

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



The table_id field references  the unique identifier of  the
table. For reference in Illustration 3 the identifier given to
the tcam table is '1'. The uid field gives a unique reference
for the rule. The uid is scoped at the table level so it is only
unique within a table. For a globally unique identifier the
tuple (ifindex, table_id, uid) is sufficient where  ifindex  is
the unique device id for the network device. If the  device
is  not  a  kernel  visible  network  device  with  an  ifindex
another field will be needed for the device identifier. The
API supports a device type field but at the moment is only
used to specify network devices.

The  matches structure provides a NULL terminated array
of match identifiers along with match values and a mask
value. The specifics for each match can be determined by
queries  from the  previous  section.  To meet  the  matches
criteria a packet must match all entries in the array.

The  actions  structure provides the list of actions to apply
when a packet meets the  matches criteria along with the
arguments required by the action. Similar to  matches the
arguments  can  be  learned  by  the  queries  previously
described.

Perhaps an interesting point to make is validation code to
verify  flows  are  valid  can  be  auto-generated  using  the
model. This allows a common block of validation logic to
be used by all  devices  that  expose a device model.  The
verification code ensures that the input match and action
signatures  match  the  model  and  are  valid  for  the
table/device being targeted by the rule.

The net_flow_table_cmd_del_rule is somewhat easier then
the add rule counterpart. To delete a flow only the globally
unique  identifier  (ifindex,  table_id,  uid)  needs  to  be
specified.

Finally  having  support  for  adding  and  deleting  rules
querying  a  device  for  currently  installed  rules  may  be
useful.  For  this  the  net_flow_table_cmd_get_rule
command is supported. As we will see in the a subsequent
section  this  does  not  require  any  driver  support  and  is
handled by the core API logic. To get flows a  table_id is
specified along with a rule identifier range to report. This is
useful for large tables that may contain many rules. If the
range is omitted the API will report the entire table.

Device Drivers
Writing a device driver to support the API requires 
implementing the following operations to support the 
query API:

 ndo_flow_get_actions
 ndo_flow_get_tbls
 ndo_flow_get_tbl_graph
 ndo_flow_get_hdrs
 ndo_flow_get_hdr_graph

These are specified as part of the struct net_device_ops in
./include/linux/netdevice.h. These are called by the query 
API previously outlined to return a portion of the device 
model. For the class of networking devices that  use static 
models, meaning the model is fixed for the device, these 
routines simply need to return a structure describing the 
query request. However this does not preclude a class of 
device that may be reconfigured at runtime. These devices 
will require a more complicated handler to retrieve the 
current configuration. There is ongoing work to configure 
the model at runtime starting with the creation and deletion
of tables discussed in future work.

Additionally there are two driver operations to support 
adding and removing rules:

 ndo_flow_set_rule
 ndo_flow_del_rule

Each of these routines are exercised by the Configuration 
API commands discussed previously. The set rule 
operation consumes a structure net_flow_rule shown in the 
previous section. The driver can then use a set of case 
statements or a lookup table to translate the rules into a 
hardware specific implementation. No validation of the 
rule needs to occur in the driver itself because as noted 
previously the API validates flow messages to ensure they 
are valid in the model. Similarly deleting a rule will call 
the ndo_flow_del_rule op and pass a  tuple identifying the 
flow (device_id, table_id, uid) to the driver. The driver 
needs to translate this into the hardware specific rule 
deletion operations.

Netlink Implementation
The Netlink implementation creates a new Netlink family 
that is used to consume Netlink messages and translate 
those into the device driver calls. As noted previously the 
Netlink interface also provides validation for the 
configuration side and a cache of the current flow state of 
the device. By maintaining the flow state in the interface 
we avoid having to query the device driver for to handle 
query requests. This table is implemented as a re-sizable 
hash table. This way we avoid consuming memory when 
tables are not in use.

Another concern is locking specifically at what granularity 
to do the locking. The available implementation does 
locking at the Netlink interface level which is not 
particularly granular. At minimum this should be done at 
the per device level. An further enhancement would be to 
lock on a per table basis. We are currently investigating 
how easily per table locks would be implementable across 
devices. We are aware of at least one device where this 
could be supported.

We are not opposed to embedding the API into existing 
Netlink families if this helps to consolidate code and 
tooling in the Linux networking subsystem. The primary 
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concern is trying to maintain a locking model that will 
allow the Flow API to scale to many operations per second.
One proposal has been to use the existing 'tc' infrastructure 
as a container for the user-kernel API. 

Future Work
The described Flow API provides a base implementation to
expose the hardware device. Although it is in our opinion a
reasonably good first implementation there are many areas 
that can be expanded.

Configurable Models
The Flow API as discussed previously primarily used static
models as examples. Further commands to configure the 
model at runtime are notable missing.

We are aware of devices that support creating and destroy 
additional tables. There is current work ongoing to 
incorporate this into the API. This involves using the 
source attribute in the table attributes section to indicate 
sub-tables of a parent table. This can be used as a hint to 
the hardware device the only a subset of the actions or 
matches in a table will be needed. For example a table that 
supports both IPv4 and IPv6 may allow for certain 
performance or space optimization if ahead of time the 
user indicates that only IPv4 is being used. In this case we 
could allow a create table operation with the source of the 
parent table and a list of required actions/matches 
specifying a subset of the parents to include only IPv4 
fields. The driver when receiving this command can create 
the optimized table.

For devices which support programming the header graph 
or even action lists it may be possible to add similar 
commands to insert new header types and actions.

Device Model Maps
The observant reader will notice we provided hints on how 
to determine equivalent headers and actions between 
devices, but did not provide any hints on how to map rule 
additions between tables.

We are working on  a couple approaches here. If you can 
make the assumption that the rules are orthogonal. Then by
traversing the graph we can insert the rule in all paths or 
throw an exception if it is not possible to insert the rule. It 
might be possible to further refine this to throw specific 
exceptions if there are escape cases where specific paths 
may fail but some paths through the pipeline can support 
the rule.  It appears that it may  be possible to generate this 
mapping up front at initialization time allowing the 
computation to be skipped when rules are added. Further 
requiring orthogonal rules at first seeming a bit extreme 
has some “real-world” examples today. The predominate 
one being the common kernel datapath used by Open-
vSwitch. This however does somewhat under utilize 
hardware resources.

Another approach currently under investigation is to 
provide a mapping from a single table to the device model 
provided by the hardware. This mapping can optimize the 
flows as much as possible. If another map can be provided 
from the user visible map onto the single table model then 
the composition of the functions gives a mapping from the 
user model onto the hardware model. Illustration5 attempts
to highlight this idea. More investigation is needed to 
decide if it is feasible in practice.

Validation
Providing maps between API consumer models and driver 
models raises questions of correctness. While algebraically
proving correctness may be useful we may also want to test
models with actual packets. This becomes even more 
relevant when the pipeline is configurable.

Using the query APIs we believe there should be enough 
information to generate test cases and test packets that can 
then be injected into the pipeline. One possibility being to 
generate pcap files and use tcpreplay to inject packets into 
the pipeline. This would allow a test coverage metric to 
give the amount of the pipeline that has been tested.

Conclusion
The Flow API proposed in this paper provides consumers 
both in the kernel and in user space with an available API 
to manage hardware devices that support flow tables.  We 
believe it as an implementation combining many good 
ideas from the various sources noted in the Reference and 
throughout the paper. In addition to the base API we also 
provide a user space CLI that can be used to directly 
manage the device. Perhaps more interesting the API is 
designed so that future extensions can be made as needed. 
We expect that existing applications and virtual switches 
can leverage the API to offload operations that are 
currently being done in software. Finally continuing to 
explore the work items in the Future Work should enable 
more seamless integration and validation. 
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