
A Flow API for Linux Hardware Devices

John Fastabend

Intel
Portland, Oregon, USA

john.fastabend@gmail.com

Abstract
This paper proposes a Linux kernel-user API called Flow API that
can be used to leverage hardware device flow tables. One goal of
this API is to be generic enough to support a wide range of
networking hardware and use cases. We believe this is essential to
a successful API on an operating system that supports host
network interface, top of rack switch devices and everything in
between. In this paper we outline the insights that have guided the
development of this API as well as illustrate how the API can be
used by developers to write useful programs that can work across
a wide array of devices without resorting to vendor specific code.
To enable this API we have readily available C code that
implements the API on top of rocker, an emulated switch
supported by Linux. Additionally we provide a user space
package to illustrate usages of the API which is also available.
Finally we want to highlight some ongoing work and open
problems under development.

Keywords
UAPI, Linux, switch, NOS, OVS, FlowAPI, offload, network
accelerators.

 Introduction
The user-kernel API called FlowAPI proposed here
addresses a notable gap presented to hardware driver
developers and user space application developers when
attempting to use flow tables in hardware devices.
Currently, developers have two options in Linux (a)
Ethtool or (b) implement/use hardware specific APIs. The
Ethtool model provides a simple view of the hardware with
many limitations. Some of the notable limitations are only
supporting a single ingress table, limited match support,
limited number and type of actions and lack of capability
queries. Additionally Ethtool uses a locking scheme which
is likely restrictive for applications that want to modify the
hardware state quickly possibly thousands of times per
second. On the other side of the spectrum hardware
specific APIs often packaged as software developer kits
(SDKs) historical released by hardware vendors for
switching silicon typically expose much more of the
hardware to the user at the expense of portability. In
general SDK's only support a specific vendor's hardware
requiring developers to write vendor specific code. Also
SDK's tend to be released with user-mode drivers and its
unclear how in-kernel drivers would export this
functionality except through proprietary and in this authors
opinion ugly vendor specific Netlink or IOCTL interfaces.

When defining the Flow API we attempted to resolve the
limitations of Ethtool and maintain a vendor neutral
implementation. Towards this goal we identified some
basic requirements:

 The API should be flexible enough to support
many different hardware pipelines

 The API incorporates new packet types and
actions easily. Preferably at run time

 The API should allow user space applications to
configure the hardware pipeline and query the
hardware for resource constraints

 The API should be vendor neutral

To support this the Flow API uses a set of API calls to
expose hardware capabilities including supported headers,
supported actions, supported tables, header graphs, and
table graphs. Using this consumers of the API can create a
usable model of most hardware devices we have been
working with. Then a set of API calls to configure the
device can be used to add rules, delete rules, create tables,
and destroy tables.

In the following sections we will show how a hardware
model can be generated from the API, how it can be
configured, and then finally provide some basic examples
showing how programs can use this to handle hardware
devices with different capability sets. The reader may use
the publicly available source code as a reference.[1][2]

Device Model

The Flow API capability queries consists of a set of API
calls built on top of the Netlink infrastructure. Netlink was
chosen primarily because it provides a backwards
compatible way to extend the API as needed. Additionally,
we expect Netlink can support the performance
requirements of most applications. The user API to query
capabilities consists of the following commands:

 net_flow_table_cmd_get_headers
 net_flow_table_cmd_get_header_graph
 net_flow_table_cmd_get_actions
 net_flow_table_cmd_get_tables
 net_flow_table_cmd_get_table_graph

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Using these commands a model of the hardware pipeline
can be created.

Supported Headers
The packet types supported by the model are queried
through the net_flow_table_cmd_get_headers and
net_flow_table_cmd_get_header_graph API commands.
The first command net_flow_table_cmd_get_headers
describes the supported packet headers as an ordered set of
fields. Where each field is described with a unique
identifier and bit width. For example a 802.1Q VLAN
header is described here,

vlan { pcp:3 cfi:1 vid:12 ethertype:16 }

The user friendly strings are only provided as a
convenience and are not required. If the user friendly
strings are not provided the unique identifier which is a
32bit unsigned integer is used. Changing the user visible
strings does not change the header layout for example,

foo { bar:3 bax:1 bay:12 baz :16 }

describes exactly the same packet header. This is just one
example of a header. The query command returns an array
of headers similar to the one illustrated above that expose
the complete header space supported by the devices. This
would typically include definitions for IPv4, IPv6,
TCP/UDP, VXLAN, etc. Each of these definitions can be
packed/unpacked into Netlink messages and passed from
the hardware driver to the user space application. The
Netlink definitions can be found in the source code in the
UAPI file ./include/uapi/linux/if_flow.h. Additional
Netlink packing and unpacking helper functions provide
program friendly structures that hardware drivers can
provide and programs can consume. In kernel consumers

of the API can use the data structures directly. These
structures are not defined as part of the user-kernel
interface but currently the same structures are being used
in both the kernel and user space code. By not being
embedded in the user-kernel API the structures can evolve
independently.

With the above commands the set of supported headers can
be exposed but the supported combination of headers still
needs to be queried to get a complete view of hardware
header support. This is relevant even on common host
network interfaces. Considering the 802.1Q VLAN
example used above some hardware may support stacked
VLANs sometimes referred to as Q'in'Q others may only
support offloads on the outer VLAN and still others may
support 3 or more stacked VLAN headers. To expose this
dependency and others like it the
net_flow_table_cmd_get_header_graph API command is
used to return a graph of the supported headers.

Illustration 1 provides an example graph of a simple
device. The graph has a root node which is denoted with
the user friendly string Ethernet. Following the Ethernet
header it expects either a 802.1Q VLAN header or an IPv4
header. Any other headers will not be supported.
Continuing through the graph shows support for UDP/TCP
and VXLAN. We note that stacked VLANs are not
supported by the single VLAN node.

The reader may also note fields that are not connected to
the graph. In Illustration 1 there is a routing metadata node
which is not connected. Metadata is used by the hardware
for many reasons some common examples are to pass
information between tables or encode information about
the packet that is outside the table pipeline. This may be
used to indicate the port the packet was received on, the
queue it was received in, etc. Metadata referencing external
information such as the two listed examples will need to be
standardized. If the metadata is only used to pass
information between tables it may be inferred from the
device model. However “knowing” when this is a safe
assumption is not knowable so we expect all metadata will
need to be standardized.

Illustration 1: Example header graph

6: dec_ttl (void)

7: set_dst_mac (u48 mac)

8: push_vlan (u16 vlan)

9: drop(void)

Illustration 2: Action Signatures

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Denoting headers and header graphs this way provides a
flexible mechanism for devices to expose packet headers in
a way that consumers of the API can query. After obtaining
the headers and header graph users can search for support
of any packet headers they will require. To do this we only
need to compare a proposed header graph and headers with
the device. If the proposed header graph is a subgraph of
the device then it can be supported. This is similar to other
subsystems in Linux such as netfilter and traffic classifiers
like u32 that use length, offset tuples to describe packets.
[3,4] In our opinion this is more elegant then reporting bit
masks of supported fields and is also easier to extend.

Supported Actions
In addition to headers and header graphs hardware devices
also support a set of actions that can be applied to the
packets and associated metadata. To query for supported
actions the net_flow_table_cmd_get_actions command can
be used.

Actions are expressed as a list of n-tuples. Each n-tuple
includes a unique identifier, an optional string key, a
signature and an action primitive list. In Illustration 2 an
excerpt from an emulated device is shown. This particular
excerpt is from the CLI included in the user space package
it shows the unique identifiers and action signatures.

Currently the API supports a small subset of possible
action primitives. We expect to expand this as needed.
Although it is important the set continue to be a minimal
set so that consumers of the API can evaluate the
equivalence of actions. The current API supports these
actions primitives

 set_field (field_id, value)
 push_header(header_id, value)
 pop_header(header_id)

 inc_field(field_id), dec_field(field_id)
 drop(void)

To see where this is relevant consider a device that
supports an action with signature,

route*(u48 DMAC, u16 VLAN)

Querying the device may result in the following action
primitive specification,

set_field (DMAC_FIELD, DMAC)
push_header(VLAN_HEADER, VLAN)
dec_field(IPV4_TTL)

as it may be possible to guess from the above description
this action will set the destination MAC address, push a
VLAN header on the packet and decrements the IPV4
TTL. Referencing Illustration 2 the same set of primitives
(although we do not list the primitives in Illustration 2 we
hope they can be inferred) can be achieved with this chain
of actions

set_dst_mac(DMAC); push_vlan(VLAN); dec_ttl(void)

Using the primitives lists and signatures a consumer of the
API can normalize the action sets across multiple devices.
Its worth noting however that this will, in most cases need
to be done up front at or near initialization time as we do
not expect the computation can be done at runtime without
impacting performance. For example we are experimenting
with normalizing both actions and headers when devices
are brought online.

At this point we should point out that these concepts have
appeared in multiple places before we happily borrowed
them to be used here. Some examples we are aware of

tcam: 1 src 1 apply 1 size 4096

 matches:

field: ethernet [dst_mac (mask) src_mac (mask) ethertype (mask)]

field: vlan [pcp (mask) cfi (mask) vid (mask) ethertype (mask)]

field: ipv4 [dscp (mask) ecn (mask) ttl (mask) protocol (mask) dst_ip (lpm) src_ip (lpm)]

field: tcp [src-port (mask) dst-port (mask)]

field: udp [src-port (mask) dst-port (mask)]

 actions:

1: set_egress_port (u32 egress_port)

3: set_dst_mac (u48 mac_address)

4: set_src_mac (u48 mac_address)

5: trap()

Illustration 3: Table Definition

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

include the work by the Netfilter team, the traffic classifier
“u32” and ongoing work at p4.org.[4] The team at p4.org
for example has defined a more complete set of action
primitives.

Tables and Table Graphs
The final piece to building the device model is to query the
device for the tables and the table graph. Each table is
identified by a unique identifier and an optional user
friendly string. Tables consist of a set of supported actions
and a set of supported matches. Illustration 3 shows an
example of a possible table returned from a
net_flow_table_cmd_get_tables query.

In addition to matches and actions tables may have various
table attributes. At the time this was written supported table
attributes include size, source, and apply action group. Size
is used to indicate the total number of rules that can fit into
a table. In the Future Work section we will discuss possible
refinements of the size attribute for tables where rules may
consume different amount of space in the table depending
on the match/actions used. Source is used to indicate where
multiple tables may be using the same physical resources.
This will also be discusses in more detail later. Apply
action group denoted by the apply value in Illustration 3 is
used in combination with the table graph in Illustration4 to
indicate when actions are applied to packets. Tables with
the same apply value will always apply actions at the same
time. Similarly actions with different apply values will be
applied in serial. For a concrete example Illustration 3
shows a table labeled tcam with an apply group of '1'.
Assuming there is another table tcam2 with an apply group
of '2'. In this case we can assume any actions from the table
labeled tcam are already applied when the packet traverses
the table labeled tcam2. However if both tables, tcam and
tcam2, have an apply group value of '1' then any actions
from tcam will not be seen by tcam2. One case where this
is relevant is where we have actions to both set a field and
match on it. In this case depending on the apply group
value we may miss or match a rule.

The match fields give the supported header and associated
fields along with the mask types supported by the field.
Currently three types are supported, mask, longest prefix,

and exact. As noted before the interface is designed to be
extended so if another mask type is needed it can be easily
added.

As noted above a device may support multiple tables (in
fact this is the common case for many classes of devices!)
and in order to effectively program such a device we need
to show how packets are sent through the set of tables. The
net_flow_table_cmd_get_table_graph as may be expected
is used to provide this. The command will return a graph
structure where each node is a table and the edges are the
packet transition qualifiers. For shorthand we use
unlabeled edges to indicate any unmatched packets.
Illustration 4 shows one possible table graph. Here we
show that Ethernet multicast packets are sent to a table
labeled bridge and and all other packets are sent to a table
labeled ucast_routing.

Using this along with a the other commands to query the
tables, matches and actions consumers of the API can
construct a functional model of the device pipeline.

Configuration

Adding and Removing Rules
Once consumers of the API have queried the device the
next item is to program rules into the tables. The following
API commands allow this:

 net_flow_table_cmd_set_rule
 net_flow_table_cmd_del_rule
 net_flow_table_cmd_get_rule

The net_flow_table_cmd_set_rule encodes the following
structure into Netlink messages,

struct net_flow_rule {
u32 table_id;
u32 uid;
u32 priority;
struct net_flow_field_ref *matches
struct net_flow_action *actions}

Illustration 4: Table Graph

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

The table_id field references the unique identifier of the
table. For reference in Illustration 3 the identifier given to
the tcam table is '1'. The uid field gives a unique reference
for the rule. The uid is scoped at the table level so it is only
unique within a table. For a globally unique identifier the
tuple (ifindex, table_id, uid) is sufficient where ifindex is
the unique device id for the network device. If the device
is not a kernel visible network device with an ifindex
another field will be needed for the device identifier. The
API supports a device type field but at the moment is only
used to specify network devices.

The matches structure provides a NULL terminated array
of match identifiers along with match values and a mask
value. The specifics for each match can be determined by
queries from the previous section. To meet the matches
criteria a packet must match all entries in the array.

The actions structure provides the list of actions to apply
when a packet meets the matches criteria along with the
arguments required by the action. Similar to matches the
arguments can be learned by the queries previously
described.

Perhaps an interesting point to make is validation code to
verify flows are valid can be auto-generated using the
model. This allows a common block of validation logic to
be used by all devices that expose a device model. The
verification code ensures that the input match and action
signatures match the model and are valid for the
table/device being targeted by the rule.

The net_flow_table_cmd_del_rule is somewhat easier then
the add rule counterpart. To delete a flow only the globally
unique identifier (ifindex, table_id, uid) needs to be
specified.

Finally having support for adding and deleting rules
querying a device for currently installed rules may be
useful. For this the net_flow_table_cmd_get_rule
command is supported. As we will see in the a subsequent
section this does not require any driver support and is
handled by the core API logic. To get flows a table_id is
specified along with a rule identifier range to report. This is
useful for large tables that may contain many rules. If the
range is omitted the API will report the entire table.

Device Drivers
Writing a device driver to support the API requires
implementing the following operations to support the
query API:

 ndo_flow_get_actions
 ndo_flow_get_tbls
 ndo_flow_get_tbl_graph
 ndo_flow_get_hdrs
 ndo_flow_get_hdr_graph

These are specified as part of the struct net_device_ops in
./include/linux/netdevice.h. These are called by the query
API previously outlined to return a portion of the device
model. For the class of networking devices that use static
models, meaning the model is fixed for the device, these
routines simply need to return a structure describing the
query request. However this does not preclude a class of
device that may be reconfigured at runtime. These devices
will require a more complicated handler to retrieve the
current configuration. There is ongoing work to configure
the model at runtime starting with the creation and deletion
of tables discussed in future work.

Additionally there are two driver operations to support
adding and removing rules:

 ndo_flow_set_rule
 ndo_flow_del_rule

Each of these routines are exercised by the Configuration
API commands discussed previously. The set rule
operation consumes a structure net_flow_rule shown in the
previous section. The driver can then use a set of case
statements or a lookup table to translate the rules into a
hardware specific implementation. No validation of the
rule needs to occur in the driver itself because as noted
previously the API validates flow messages to ensure they
are valid in the model. Similarly deleting a rule will call
the ndo_flow_del_rule op and pass a tuple identifying the
flow (device_id, table_id, uid) to the driver. The driver
needs to translate this into the hardware specific rule
deletion operations.

Netlink Implementation
The Netlink implementation creates a new Netlink family
that is used to consume Netlink messages and translate
those into the device driver calls. As noted previously the
Netlink interface also provides validation for the
configuration side and a cache of the current flow state of
the device. By maintaining the flow state in the interface
we avoid having to query the device driver for to handle
query requests. This table is implemented as a re-sizable
hash table. This way we avoid consuming memory when
tables are not in use.

Another concern is locking specifically at what granularity
to do the locking. The available implementation does
locking at the Netlink interface level which is not
particularly granular. At minimum this should be done at
the per device level. An further enhancement would be to
lock on a per table basis. We are currently investigating
how easily per table locks would be implementable across
devices. We are aware of at least one device where this
could be supported.

We are not opposed to embedding the API into existing
Netlink families if this helps to consolidate code and
tooling in the Linux networking subsystem. The primary

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

concern is trying to maintain a locking model that will
allow the Flow API to scale to many operations per second.
One proposal has been to use the existing 'tc' infrastructure
as a container for the user-kernel API.

Future Work
The described Flow API provides a base implementation to
expose the hardware device. Although it is in our opinion a
reasonably good first implementation there are many areas
that can be expanded.

Configurable Models
The Flow API as discussed previously primarily used static
models as examples. Further commands to configure the
model at runtime are notable missing.

We are aware of devices that support creating and destroy
additional tables. There is current work ongoing to
incorporate this into the API. This involves using the
source attribute in the table attributes section to indicate
sub-tables of a parent table. This can be used as a hint to
the hardware device the only a subset of the actions or
matches in a table will be needed. For example a table that
supports both IPv4 and IPv6 may allow for certain
performance or space optimization if ahead of time the
user indicates that only IPv4 is being used. In this case we
could allow a create table operation with the source of the
parent table and a list of required actions/matches
specifying a subset of the parents to include only IPv4
fields. The driver when receiving this command can create
the optimized table.

For devices which support programming the header graph
or even action lists it may be possible to add similar
commands to insert new header types and actions.

Device Model Maps
The observant reader will notice we provided hints on how
to determine equivalent headers and actions between
devices, but did not provide any hints on how to map rule
additions between tables.

We are working on a couple approaches here. If you can
make the assumption that the rules are orthogonal. Then by
traversing the graph we can insert the rule in all paths or
throw an exception if it is not possible to insert the rule. It
might be possible to further refine this to throw specific
exceptions if there are escape cases where specific paths
may fail but some paths through the pipeline can support
the rule. It appears that it may be possible to generate this
mapping up front at initialization time allowing the
computation to be skipped when rules are added. Further
requiring orthogonal rules at first seeming a bit extreme
has some “real-world” examples today. The predominate
one being the common kernel datapath used by Open-
vSwitch. This however does somewhat under utilize
hardware resources.

Another approach currently under investigation is to
provide a mapping from a single table to the device model
provided by the hardware. This mapping can optimize the
flows as much as possible. If another map can be provided
from the user visible map onto the single table model then
the composition of the functions gives a mapping from the
user model onto the hardware model. Illustration5 attempts
to highlight this idea. More investigation is needed to
decide if it is feasible in practice.

Validation
Providing maps between API consumer models and driver
models raises questions of correctness. While algebraically
proving correctness may be useful we may also want to test
models with actual packets. This becomes even more
relevant when the pipeline is configurable.

Using the query APIs we believe there should be enough
information to generate test cases and test packets that can
then be injected into the pipeline. One possibility being to
generate pcap files and use tcpreplay to inject packets into
the pipeline. This would allow a test coverage metric to
give the amount of the pipeline that has been tested.

Conclusion
The Flow API proposed in this paper provides consumers
both in the kernel and in user space with an available API
to manage hardware devices that support flow tables. We
believe it as an implementation combining many good
ideas from the various sources noted in the Reference and
throughout the paper. In addition to the base API we also
provide a user space CLI that can be used to directly
manage the device. Perhaps more interesting the API is
designed so that future extensions can be made as needed.
We expect that existing applications and virtual switches
can leverage the API to offload operations that are
currently being done in software. Finally continuing to
explore the work items in the Future Work should enable
more seamless integration and validation.

References
1. John Fastabend, “net-next-rocker”, github website,
accessed February 10, 2015,
https://github.com/jrfastab/rocker-net-next
2. John Fastabend, “user space tool”, github website,
accessed February 10, 2015
https://github.com/jrfastab/iprotue2-flow-tool
3. Pablo Neira Ayuso“nftables HOWTO”, nftables website,
accessed February 10, 2015
http://wiki.nftables.org/
4. Bert Hubert, Gregory Maxwell, et. al,“Linux Advanced
Routing & Traffic Control HOWTO”, tldp.org, accessed
February 10, 2015
http://tldp.org/HOWTO/Adv-Routing-HOWTO/
5. Pat Bosshard, Dan Daly, Glen Bibb, et. al., “P4:
programming protocol-independent packet processors”

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

https://github.com/jrfastab/rocker-net-next
https://github.com/jrfastab/iprotue2-flow-tool

ACM SIGCOMM Computer Communication Review
Volume 44 Issue 3, (July 2014): 87-95

Author Biography
John Fastabend is a network engineer employed by Intel
Corp. he works on Linux kernel networking components,
various hardware devices, some user space applications
and miscellaneous other software components.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

