Offloading to yet-another software switch

Michio Honda
NetApp
firstname @netapp.com

Abstract

Recent software switches, such as VALE and DPDK-based
Open vSwitch have significant advantages over traditional
Linux bridge in terms of throughput, scalability and/or flexibil-
ity. For example, VALE, a software switch based on netmap,
forwards 64 byte frames at 10 Mpps with L2 learning logic,
which is approximately 10 times faster than Linux bridge;
and it scales to hundreds of switch ports using a novel packet
switching algorithm, which is important when we use a soft-
ware switch as a backend to interconnect VMs and NICs.

In this paper we present experience with offloading packet
switching to VALE under familiar Linux bridge control. We
exploit recent extensions in Linux bridge to offload packet
switching to switch ASICs like Rocker while keeping control
in Linux. Offloading to software switches improves packet
switching without switch ASICs. It also improves packet
switching for software ports where VMs or applications attach.

1 Introduction

Software switches have played an important role to intercon-
nect virtual machines and NICs as well as to alter hardware
switches. Being maintained as a part of operating system’s
network stack, they are widely used in today’s production
systems.

Unfortunately, software switches have not benefited from
network stack’s evolution. For example, extremely general
packet representation which supports multiple consumers and
non-contiguous buffers is wasteful for packet switching. Fur-
ther, software switches cannot use NIC’s offloading capabil-
ities to reduce per-byte cost, such as TCP Segmentation Of-
fload and Large Receive Offload, because they transform the
original packets.

Therefore, modern, out-of-tree software switches, such as
VALE and DPDK-based Open vSwitch use minimalistic, thus
efficient data structures, APIs and techniques like zero-copy,
polling and batching. As a result, they can forward minimum-
sized packets at 10 Mpps or higher using a single Xeon 3.2
Ghz CPU core, while Linux bridge can do so only at 1 Mpps.

However, it makes their deployment hard that these new
switches implement their own control or CLIs. Today’s pro-
duction systems heavily rely on Linux bridge in their oper-
ation that is often automated. Slight difference from Linux
bridge, or even the fact that what they control is not a Linux
bridge, impacts on operation of existing systems.

In this paper we describe solution to address this problem.
We exploit a set of recent extensions to Linux bridge called
“switchdev API”, which is designed to support switch ASICs
under the control of Linux bridge, such as attaching and de-
taching ports to a switch instance with ip 1ink command,
and adding and deleting a L2 forwarding entry with bridge
command. In other words, switchdev API enables offloading
packet forwarding to switch ASICs. We demonstrate that the
switchdev API enables not only control of switch ASICs but
also that of out-of-tree software switches.

This approach enables offloading packet forwarding with-
out switch ASICs, because even on the same hardware setup,
out-of-tree software switches achieve much higher perfor-
mance, lower latency and/or higher scalability to the number
of ports than Linux bridge.

Offloading to a fast software switch also accelerates virtu-
alization backend. It is quite common to run a large number
of VMs that share the same NIC, while the software switch
routes packets between one of these VMs and the NIC, or be-
tween VMs based on installed rules. The software switch also
often performs encapsulation and decapsulation of tunneling
protocols. Note that sharing the NIC using SR-IOV or similar
hardware features is not always possible, because it provides
much lower flexibility in routing and tunneling.

2 Overview of VALE software switch

In the rest of this paper we describe a case study with VALE
which is a netmap-based, modular software switch that runs
in the kernel. VALE outperforms Linux bridge by approx-
imately ten times, because it inherits preallocated, compact
data structures from netmap API, and it extensively exploits
batching to amortize costs of device register access, system-
call and output port locking. VALE also scales to a large
number of switch ports because of a novel packet switching
algorithm. VALE is implemented in the same kernel module
with netmap APIL.

VALE by default operates as a L2 learning bridge which
is a; however, it can be replaced by a separate kernel module
that implements a different switching logic. More features of
VALE are described in [1,2].

VALE interconnects regular network interfaces represented
as struct net_device, but it operates these interfaces
with enabling netmap or in netmap-mode in order for efficient
packet I/O. In this mode, when a series of packets arrives,

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



packet processing is intercepted before sk_buffs are allo-
cated; instead, these packets are stored in a simple, preallo-
cated netmap ring that accompanies netmap slots. !
netmap thus extends struct net_device with a pointer
to a netmap-specific structure that contains netmap rings and
slots. But since netmap reuses an unused pointer, we do not
need to recompile the entire kernel. VALE processes packets
on these data structures throughout packet forwarding.

3 Extending VALE to meet switchdev API

Overall, extending VALE for switchdev API is pretty
easy. Most of necessary code can be taken from
Rocker (emulated) switch ASIC driver which is at
drivers/net/ethernet/rocker/.

We exploit 1.) a callback on network device events that is
registered by register_netdevice_notifier ()
to configure VALE switch ports, 2.) new
net _device_ops callbacks to forward commands
for L2 forwarding database and 3.) an interface of
call netdev_switchnotifiers() to notify the
Linux bridge of VALE switch configuration change. For
simplicity, we use the term switchdev API to refer to all of
them.

When loading a VALE kernel module, we simply
register_netdevice_notifier () to listen to bridge
creation, port attach and port detach in the Linux bridge,
which is usually triggered by the ip 1ink command. Upon
reception of each event VALE manipulates its switch instance
to be equivalent to the corresponding Linux bridge.

This process is specific to software switches. While switch
ASICs just want to know logical structure of the Linux bridge,
VALE or other software switches actually construct its switch
instance by attaching and detaching a port, or creating a
switch instance itself, because their switch instances and ports
are dynamic. Therefore, while switch ASICs only process
NETDEV_CHANGEUPPER, VALE or software switches also
have to process NETDEV_REGISTER to notice bridge cre-
ation.

Next, we have to forward commands for L2 forward-
ing database from Linux bridge to VALE. These commands
are usually issued by the bridge command. Here we
can use new callbacks in ndo_ops defined for switchdev
API: ndo_fdb_add, ndo_fdb_del and ndo_fdb_dump.
This part is a bit tricky, because we have to change
net_device_ops dynamically after the net_device is
initialized. Since net_device_ops is defined as con-
stant in struct net_device, we have to replace entire
net_device_ops.

This problem does not happen to a switch ASIC. While
it exports all the ports as net_devices, the switch ASIC
driver can initialize them using its own net_device_ops,
because these net _devices are specific to the switch ASIC.
In software switches, on the other hand, they are latecomers

'Intercepting packets before sk_buff allocation is done by
patching device driver code. However, netmap also supports a mode
that uses unmodified device driver at the expense of performance.
This mode is implemented by registering callback using familiar
netdev_register_rx_handler ().

or a net_device_ops has been already set by driver’s ini-
tialization routine. Therefore, the need for dynamic update of
net_device_ops is not specific to VALE but common to
other software switches that attach existing net _devices.

Once ndo_fdb_» callbacks are registered, the next step
is manipulating VALE’s forwarding database. This step
is easy because this forwarding database is completely
internal within VALE. The final step is VALE notify-
ing Linux of changes in tis forwarding database using
call netdev_switchnotifiers().

Here we are ready to configure the VALE switch like a
Linux bridge, using familiar ip 1link and bridge com-
mand.

4 Conclusion

We learnt that software switches easily meet switchdev APIs.
However, we suggest two improvements in Linux in order to
support out-of-tree software switches.

First, it could be useful if we have a better way to dynam-
ically update net _device_ops. At least for in-kernel soft-
ware switches, it is essential that we need to update bridge-
related callbacks in net _device_ops.

Second, it could be useful if Linux bridge can skip call-
ing netdev_rx_handler_register () when attaching
a port to an offloading software switch. netmap API supports
generic mode which uses unmodified device driver. When
a NIC operates in this mode, packets are intercepted us-
ing netdev_rx_handler_register (). This prevents
Linux bridge from doing so to attach the network interface.
We believe it is possible because this callback is also unnec-
essary to switch ASICs.

We also noticed that switchdev API would not meet user-
space software switches, such as DPDK vSwitch as easily
as in-kernel software switches. User-space software switches
could need to create a fake kernel switch that implements
callbacks on net_device ports to synchronize with a user-
space real switch. (These net _device ports are also fake if
we run device drivers in user space.)

For future work we plan to work on L3 forwarding. As
described in Section 2, VALE’s switching logic can be re-
placed by a separate kernel module. It could be useful
if we implement a module that performs very fast IPv4
lookup like DXR [3] and connects its control to callbacks in
net_device_ops.

References
[1] L. Rizzo and G. Lettieri, Vale: a switched ethernet for virtual
machines, Proc. acm conext, 2012December.

[2] L.Rizzo, G. Lettieri, and M. Honda, Netmap as a core network-
ing technology, AsiaBSDCon (2014).

[3] M. Zec, L. Rizzo, and M. Mikuc, Dxr: towards a billion routing
lookups per second in software, SIGCOMM Comput. Commun.
Rev. 42 (September 2012), no. 5, 29-36.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada



