
The case for eliminating inconsistencies between
IPv4 and IPv6 kernel User API

Roopa Prabhu

Cumulus Networks,
 Mountain View, CA, USA,

roopa@cumulusnetworks.com

Abstract
The Linux kernel provides a rich Netlink based user API (UAPI)
to configure, deploy and manage IPv4 and IPv6. However, the
UAPI's for IPv4 and IPv6 are not consistent in some cases. Some
of these inconsistencies include: IPv6 addresses are removed on
link down, but IPv4 addresses stay. The IPv4 multipath route
handling API is different from IPv6. Over the years user-space
components have worked around these inconsistencies. In this
paper we survey the inconsistencies in the kernel UAPI between
IPv4 and IPv6 and present the solutions we adopted to work
around these inconsistencies in user space. We show how these
inconsistencies cascade into multiple components (routing
daemons, user-space Netlink caches and hardware offload
drivers) in a system. We show that the resulting implementation is
complex enough to justify an effort to eliminate these
inconsistencies in the future by unifying the IPv4/IPv6 kernel
UAPI.

Keywords
Linux, Kernel, Ipv4, Ipv6, iproute2, Rtnetlink, netlink

 Introduction
Linux kernel provides Netlink [1],[2],[3] based UAPI to provision
and manage IPv4 and IPv6 addresses and routes.

Figure 1. Example application talking to kernel using IPv4 and
IPv6 netlink UAPI.

The most common networking applications using the kernel IPv4
and IPv6 Netlink UAPI include routing daemons, network
interface managers and hardware offload drivers in users-pace.

• Routing Daemons: A routing daemon like quagga [11]
running in user-space uses the netlink kernel UAPI to
push IPv4 and IPv6 routes into the kernel FIB.

• Network interface managers: Network interface
managers provision network interfaces, addresses and
static routes. Network interface managers use the
Netlink UAPI to talk to the kernel directly or may use
other tools that in-turn use the netlink UAPI

• Network hardware offload drivers in user-space: A
hardware offload driver may use the kernel IPv4 and
IPv6 UAPI to program kernel routes to hardware.
Example [8], [9] These drivers in most cases build
Netlink caches in user-space. Hardware offload drivers
primarily use these netlink caches to interpret changes
in the kernel database via notifications and program the
hardware accordingly. They start with a dump from the
kernel and rely on netlink notifications to update the
cache. Libnl [11] allows building netlink caches in user-
space.

Figure 2. Example applications using netlink api to configure
Ipv4/IPv6

In building a network switching platform using Linux as the
control plane [8], we have had a chance to see the IPv4/IPv6 U
API from the view of all the applications listed above. We have
observed inconsistencies in the IPv4 and IPv6 UAPI and also
seen that the API inconsistency handling becomes part of more
than one component in the system.

 The goal of this paper is to provide a survey of the IPv4/IPv6
kernel UAPI inconsistencies, lessons learnt, solutions to
handling these in user-space, problems involved and a method to
solve this problem in the kernel.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

We understand that most of the UAPI inconsistency comes from
the fact that the kernel keeps its ABI promise and stands strictly
behind supporting all of the legacy UAPI's the user has been
exposed to. Hence in most cases there is no fix. Nonetheless, we
hope this paper will provide justification for consistent IPv4 and
IPv6 kernel UAPI in the future. We hope this paper will also
serve as a guide to deploying IPv4 and IPv6 on Linux.

Related Work
There have been attempts [5], [6] to fix some of the
inconsistencies. [5] has been accepted recently in the kernel. [6] is
pending. Our paper describes these and additional inconsistencies
that remain unresolved.

IPv4/IPv6 kernel API inconsistencies
We will discuss inconsistencies in the kernel IPv4/IPv6 UAPI in
the following areas:

• Address handling on interface down
• Route delete notifications on interface down
• Multipath route add/del UAPI
• Multipath route netlink notification
• Multipath route replaces
• Multipath route appends
• Handling un-equal cost multipath routes

The rest of the sections in this paper will cover details on the
above, discuss solutions in user-space, associated problems and
possible in-kernel solution. In each case we show some examples
using iproute2 [10].

Address handling on interface down
On interface down, IPv6 addresses are flushed but IPv4 addresses
are not. Interface addresses can be configured by user directly
using Linux native commands like iproute2 [10], dynamically
obtained by a protocol like DHCP [13], configured using network
interface managers or routing daemons like quagga[11]. As a
result of which in a given system these interface addresses can be
owned by multiple components.

interface dummy0 below has an ipv4 address, ipv6 global
and ipv6 link local address
ip addr show
4: dummy0: <BROADCAST,NOARP,UP,LOWER_UP> mtu
1500 qdisc noqueue state UNKNOWN group default
 link/ether 12:3f:92:73:f7:1f brd ff:ff:ff:ff:ff:ff
 inet 10.0.13.2/24 scope global dummy0
 valid_lft forever preferred_lft forever
 inet6 2001:20:1::2/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::103f:92ff:fe73:f71f/64 scope link
 valid_lft forever preferred_lft forever

down dummy0
ip link set dev dummy0 down

ip monitor output displaying address
delete notification for ipv6 link local and global address
from the kernel. No deletes were performed for Ipv4
#
ip monitor addr
Deleted 4: dummy0 inet6 2001:20:1::2/64 scope global
 valid_lft forever preferred_lft forever
Deleted 4: dummy0 inet6 fe80::103f:92ff:fe73:f71f/64 scope
link valid_lft forever preferred_lft forever

bring interface dummy0 up
ip link set dev dummy0 up

ip monitor output showing ipv6 link local address coming
back up
ip monitor addr
4: dummy0 inet6 fe80::103f:92ff:fe73:f71f/64 scope link
 valid_lft forever preferred_lft forever

ipv6 global scope address 2001:20:1::2/64, never came back
and is lost
ip addr show
4: dummy0: <BROADCAST,NOARP,UP,LOWER_UP> mtu
1500 qdisc noqueue state UNKNOWN group default
 link/ether 12:3f:92:73:f7:1f brd ff:ff:ff:ff:ff:ff
 inet 10.0.13.2/24 scope global dummy0
 valid_lft forever preferred_lft forever
 inet6 fe80::103f:92ff:fe73:f71f/64 scope link
 valid_lft forever preferred_lft forever

• Solutions in user-space: All interested daemons can listen
to link notifications from the kernel and restore IPv6
addresses on link up (netplugd can be configured to do
this. But since netplugd does not own interface address
configuration, it will require all interested daemons to
hook into netplugd or have netplugd understand address
configuration in the daemons).

Problems: Having to remember and handle this specific
behavior in more than one component is error-prone. This

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

aggravates the problem when you have network
namespaces and each namespace must now handle the
same behavior (run netplugd instances). Caution must be
taken to make sure not more than one daemon/component
is trying to fix the problem and step on each other

• Solution in kernel: Kernel IPv6 behavior can be made to
be consistent with IPv4. Kernel should not flush IPv6
static addresses on link down (This can be made
conditional on a sysctl [12] and this was done recently in
[5])

Route delete notifications on interface
down
Kernel notifies user-space of IPv6 dead routes on interface down
but user-space is not notified of IPv4 dead routes on interface
down.

interface dummy0 below has an ipv4 address, ipv6 global
and ipv6 link local address

ip addr show
4: dummy0: <BROADCAST,NOARP,UP,LOWER_UP> mtu
1500 qdisc noqueue state UNKNOWN group default
 link/ether 12:3f:92:73:f7:1f brd ff:ff:ff:ff:ff:ff
 inet 10.0.13.2/24 scope global dummy0
 valid_lft forever preferred_lft forever
 inet6 2001:20:1::2/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::103f:92ff:fe73:f71f/64 scope link
 valid_lft forever preferred_lft forever

showing IPv4 connected routes installed by the kernel
for the IPv4 address
ip -4 route show
10.0.13.0/24 dev dummy0 proto kernel scope link src
10.0.13.2

showing IPv6 connected routes installed by the kernel
for the IPv6 address
 ip -6 route show
2001:20:1::/64 dev dummy0 proto kernel metric 256
fe80::/64 dev dummy0 proto kernel metric 256

As you can see below, only notifications for IPv6 were
generated by the kernel. There were no notifications for
IPv4 route delete.
ip monitor route
Deleted 2001:20:1::/64 dev dummy0 proto kernel metric 256
Deleted fe80::/64 dev dummy0 proto kernel metric 256
Deleted ff00::/8 dev dummy0 table local metric 256
Deleted local 2001:20:1::2 dev lo table local proto none
metric 0
Deleted local fe80::103f:92ff:fe73:f71f dev lo table local proto
none metric 0

Both IPv4 and IPv6 connected routes were deleted by
the kernel
ip -4 route show
ip -6 route show

• Solutions in user-space: An application can listen to link

notifications and purge all IPv4 dead routes i.e. purge all
routes pointing to down interfaces (routing daemons
already do this)

Problems: Every application managing routes needs to
remember this and have efficient purging functions to
purge routes on link down. With large routing databases,
it also becomes necessary to maintain an efficient data
structure linking interfaces to routes they are part of.
Mimicking the kernel hashtable of links
(fib_info_devhash) and the nexthops it points to becomes
necessary.

• Solution in kernel: IPv4 UAPI can be fixed to generate
notifications on all dead routes similar to IPv6. Kernel
does not generate notifications for dead routes today
because user-space can figure this out. Which we believe
might be the right thing to do given that this can generate
a notification storm on interface down. Nonetheless, this
is still an inconsistency in IPv4 and IPv6 UAPI.

Multipath route add/del API
Kernel supports two separate netlink message formats for IPv6
equal cost multipath route add and deletes: each nexthop can be
added as a separate route with the same prefix or all nexthops can
be grouped into a single message. The latter makes the IPv6
multipath route API consistent with IPv4. The kernel supports the
old API to not break existing users and hence there is no solution
to this inconsistency. Nonetheless, there are two versions of the
API and we see a mix of these two API's in use today.

Add a IPv4 multipath route
ip route add 10.0.12.2 nexthop via 10.0.13.2 dev dummy0
nexthop via 10.0.14.2 dev dummy1

dump of kernel IPv4 routes showing the multipath route
ip -4 route show
10.0.12.2
 nexthop via 10.0.13.2 dev dummy0 weight 1
 nexthop via 10.0.14.2 dev dummy1 weight 1

Add a IPv6 multipath route
First approach: Add individual nexthops separately
ip -6 route add 3ffe:304:124:2306::/64 nexthop via
fe80::b077:f0ff:fe23:5cc7 dev dummy0
ip -6 route add 3ffe:304:124:2306::/64 nexthop via

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

fe80::d850:e7ff:fe87:cf6a dev dummy1

dump of kernel IPv6 routes showing the multipath route
ip -6 route show
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

The ipv6 route added above is removed to show the
second approach below

Second approach: All nexthops can be added together,
same as ipv4
ip -6 route add 3ffe:304:124:2306::/64 nexthop via
fe80::b077:f0ff:fe23:5cc7 dev dummy0 nexthop via
fe80::d850:e7ff:fe87:cf6a dev dummy1

dump of kernel IPv6 routes showing the multipath route
ip -6 route show
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

Multipath route netlink notification
IPv6 multipath netlink route notification format is different from
IPv4. Kernel generates a separate netlink route notification for
each nexthop in an IPv6 multipath route. Kernel generates a
single notification with all nexthops in the same notification
message for IPv4 multipath route. This inconsistency exists
because of the way IPv6 multipath routes are stored in the kernel
route database. They are stored as separate routes through each
nexthop and linked as siblings if they have the same destination
and metric.

Add IPv4 multipath route
$ip route add 10.0.12.2 nexthop via 10.0.13.2 dev dummy0
nexthop via 10.0.14.2 dev dummy1

below ip monitor output shows notification for multipath route
add from kernel
$ip monitor route
10.0.12.2
 nexthop via 10.0.13.2 dev dummy0 weight 1
 nexthop via 10.0.14.2 dev dummy1 weight 1

Add a IPv6 multipath route
$ip -6 route add 3ffe:304:124:2306::/64 nexthop via
fe80::b077:f0ff:fe23:5cc7 dev dummy0 nexthop via
fe80::d850:e7ff:fe87:cf6a dev dummy1

Notifications for the IPv6 multipath route add from kernel
ip monitor route
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

• Solution in user-space: An application in user-space can
maintain a cache of IPv6 routes and use nexthop netlink
notifications from the kernel to accrue IPv6 nexthops into
a single multipath route for the same prefix. i.e. follow
the kernel approach of linking IPv6 multipath routes into
siblings if they have the same destination. One such patch
was posted to libnl [7]. As we will see in the later
sections, this approach will also need to handle route
multipath appends and replaces.

Problems: User-space rebuilding the multipath route
from notifications can be error prone in the below
cases: During large route dumps with iproute adds and
deletes in progress in parallel, there is a potential of
duplicate msgs and duplicate next-hops. As will be
described later in the paper, this will also need to be
ordered correctly for route replaces
(NLM_F_REPLACE) and route appends
(NLM_F_APPEND)

• Solution in kernel: Kernel can fix IPv6 multipath route
notifications to be in the same format as IPv4. i.e. All
nexthops in a multipath route belong to the same msg.
This change in behavior can be wrapped in a sysctl [12]
to not break existing users.

Multipath route replaces
IPv6 multipath route replace handling and notification is different
from IPv4. As described in the last section, this is because of the
way IPv6 multipath routes are stored in the kernel route database.
Route replace is an efficient way to request route updates in the
kernel. It replaces two messages (add + del) with a single
message and this can speed up performance when syncing large
routing tables to the kernel from routing daemons. Replaces are
indicated to the kernel using the NLM_F_REPLACE flag in the
netlink message flags [4]. Interpreting kernel route replace
notifications in user-space has always been tricky. This is because
replace notifications do not contain enough information of the
route being replaced in the kernel. It only contains information
about the new route that got inserted in the routing database.

Unlike IPv4, IPv6 allows replacing a single nexthop in a
multipath route and the kernel generates replace notification for
the replaced nexthop. IPv4 does not allow replacing a single
nexthop. However, it does allow replacing a multipath route with
a new one. This also results in the multipath route replace
notification containing the full new multipath route making it
easier in user-space to handle route replaces.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

ip route show
10.0.12.2
 nexthop via 10.0.13.2 dev dummy0 weight 1
 nexthop via 10.0.14.2 dev dummy1 weight 1

#ip route replace 10.0.12.2 nexthop via 10.0.15.2 dev dummy2

#ip monitor route
10.0.12.2 via 10.0.15.2 dev dummy2

ipv4 route was replaced
ip route show
10.0.12.2 via 10.0.15.2 dev dummy2

#ipv6
ip -6 route show
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

ip -6 route replace 3ffe:304:124:2306::/64 nexthop via
fe80::c26:cdff:feca:18f2 dev dummy2

ip monitor route
3ffe:304:124:2306::/64 via fe80::c26:cdff:feca:18f2 dev
dummy2 metric 1024

ipv6 nexthop was replaced
ip -6 route show
3ffe:304:124:2306::/64 via fe80::c26:cdff:feca:18f2 dev
dummy2 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

• Solutions in user-space: As described in previous section,
IPv6 next-hop notifications can be accrued in user-space
to build an IPv6 multipath that is similar to IPv4. Replace
notifications include the NLM_F_REPLACE flag which
can be used to always replace the first nexthop.

Problems: Always replacing the first nexthop might not be
the right thing to do and could be error prone.

• Solution in kernel: As discussed previously, making
kernel IPv6 multipath notification format to be same as
IPv4 makes this problem easier to handle in user-space.
Additionally, kernel replace notifications could contain a
new nested attribute with hints to the user about the route
or nexthop being replaced in the kernel

 Multipath route append
Unlike IPv4, IPv6 allows appending a nexthop to an existing
multipath route. User-space IPv6 netlink route handling functions
must also take into account that IPv6 nexthop notifications can be
due to an append and handle nexthop appends to an existing route
accordingly. Appends are indicated to the kernel using the
NLM_F_APPEND flag in the netlink message flags [3]

#ipv4

ip route show
10.0.12.2
 nexthop via 10.0.13.2 dev dummy0 weight 1
 nexthop via 10.0.14.2 dev dummy1 weight 1

ip route append 10.0.12.2 nexthop via 10.0.15.2 dev dummy2

ip monitor route
10.0.12.2 via 10.0.15.2 dev dummy2

A new route was appended
ip route show
10.0.12.2
 nexthop via 10.0.13.2 dev dummy0 weight 1
 nexthop via 10.0.14.2 dev dummy1 weight 1
10.0.12.2 via 10.0.15.2 dev dummy2

#ipv6

ip -6 route show
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024

ip monitor route
3ffe:304:124:2306::/64 via fe80::c26:cdff:feca:18f2 dev
dummy2 metric 1024

ip -6 route append 3ffe:304:124:2306::/64 nexthop via
fe80::c26:cdff:feca:18f2 dev dummy2

A new nexthop was appended to the existing multipath route
ip -6 route show
3ffe:304:124:2306::/64 via fe80::b077:f0ff:fe23:5cc7 dev
dummy0 metric 1024
3ffe:304:124:2306::/64 via fe80::d850:e7ff:fe87:cf6a dev
dummy1 metric 1024
3ffe:304:124:2306::/64 nexthop via fe80::c26:cdff:feca:18f2
dev dummy2

• Solution in user-space: As described in the previous
sections, IPv6 next-hop notifications can be accrued in

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

user-space to build an IPv6 multipath route that is similar
to IPv4. User-space can then use the NLM_F_APPEND
flag in the route nexthop notification to append the
nexthop to the tail of nexthops.

Problems: guessing appends in user-space can be error
prone

• Solution in kernel: As discussed previously, making
kernel IPv6 multipath notification format to be same as
IPv4 makes this problem easier to handle in user-space
This can be wrapped in a sysctl [12] to not break existing
users.

Un-equal cost multipath routes

In an un-equal cost multipath route there are two ways to assign
weights to nexthops:

1. Repeat the nexthop times equal to the weight of
the nexthop (duplicate nexthops). Most hardware
routing ASICS program multipath routes in this
format.

2. Use 'weight' attribute to assign weights to nexthops

IPv4 supports both ways 1) and 2) above to handle un-equal cost
multipath routes. IPv6 supports only 2).

Since most hardware routing ASICS do accept format 1), some
IPv4 deployments use approach 1) today. And, when these
deployments have to move to IPv6, they need to now tweak their
handling of non-equal cost multipath routes for IPv6 because of
this inconsistency.

ip route add 10.0.12.2 nexthop via 10.0.13.2 dev dummy0
nexthop via 10.0.14.2 dev dummy1 nexthop via 10.0.14.2 dev
dummy1

ip route show
10.0.12.2

nexthop via 10.0.13.2 dev dummy0 weight 1
nexthop via 10.0.14.2 dev dummy1 weight 1
nexthop via 10.0.14.2 dev dummy1 weight 1

ip route add 3ffe:304:124:2306::/64 nexthop via
fe80::b077:f0ff:fe23:5cc7 dev dummy0 nexthop via
fe80::d850:e7ff:fe87:cf6a dev dummy1 exthop via
fe80::d850:e7ff:fe87:cf6a dev dummy2
/* error */

• Solutions in user-space: Weights can always be used to
indicate un-equal cost multipath routes avoiding the need
to use duplicate nexthops. This inconsistency can also be
made hidden in a netlink library API which can take
duplicate nexthops but convert it into weights before
pushing it to the kernel.

• Solutions in kernel: For consistency, the kernel should
allow duplicate nexthops in a IPv6 multipath route.

Conclusions
There are many solutions possible in ironing out the kernel
inconsistencies in IPv4 and IPv6 UAPI. An ideal solution would
not require these inconsistencies to be handled in network
applications. User-space netlink libraries can be used to abstract
out the inconsistencies. An in-kernel solution which can unify the
kernel IPv4 and IPv6 UAPI would simplify development of
network applications.

Acknowledgements
The author thanks Shrijeet Mukherjee and others at Cumulus
networks for insights into IPv4/IPv6 handling in hardware
accelerated switches.

References
1. J. Hadi Salim, H. Khosravi, A. Kleen, A. Kuznetsov,
Linux Netlink as an IP Services Protocol, RFC 3549, July 2003
2. Generic netlink: http://lwn.net/Articles/208755/
3. Pablo Neira Ayuso,Rafael M. Gasca, Laurent Lefevre.
Communicating between the kernel and user-space Linux using
Netlink sockets. Software: Practice and Experience, 2010
4. Understanding and programming with Netlink sockets

 http://people.redhat.com/nhorman/papers/netlink.pdf
5. patch by David Ahern 'net: ipv6: Make address flushing on
ifdown optional'
http://permalink.gmane.org/gmane.linux.network/346229
6. patch by Nicolas Dichtel to fix route delete notifications on
linkdown for iPv4: http://patchwork.ozlabs.org/patch/195516/
7. patch by shrijeet Mukerjee and Roopa Prabhu to accrue ipv6
nexthops in libnl http://lists.infradead.org/pipermail/libnl/2012-
December/000836.html
8. Cumulus Networks user-space hardware switching daemon:
http://cumulusnetworks.com/product/architecture/
9. Open route cache: http://www.e-
side.co.jp/okinawaopendays/2014/document/12_Rob-
Sherwood.pdf

10. iproute: advanced routing tools for Linux. Web pages at:
http://www.linuxfoundation.org/collaborate/workgroups/netw
orking/iproute2

11. Quagga team. Quagga Routing Software Suite. Web pages at:
http://www.quagga.net
12. Linux kernel sysctl documentation
https://www.kernel.org/doc/Documentation/sysctl/
13. DHCP https://www.isc.org/downloads/dhcp/

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://lwn.net/Articles/208755/
https://www.kernel.org/doc/Documentation/sysctl/
http://www.quagga.net/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://www.e-side.co.jp/okinawaopendays/2014/document/12_Rob-Sherwood.pdf
http://cumulusnetworks.com/product/architecture/
http://lists.infradead.org/pipermail/libnl/2012-December/000836.html
http://lists.infradead.org/pipermail/libnl/2012-December/000836.html
http://patchwork.ozlabs.org/patch/195516/
http://permalink.gmane.org/gmane.linux.network/346229
http://people.redhat.com/nhorman/papers/netlink.pdf

Author Biography
Roopa Prabhu is a member of technical staff at Cumulus
Networks. At Cumulus she works on networking in the Linux
kernel and user-space, Network interface management and other
system infrastructure areas. Her previous experience includes
Linux clusters, ethernet drivers and Linux KVM virtualization
platforms. She has an MS in Computer Science from the
University of Southern California

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

