
p4-tc Workshop
A new traffic classifier for Linux

Netdev 0x16

p4-tc Workshop
A new traffic classifier for Linux

Workshop Agenda (~ 2.5 hrs)

• Test Framework (45 mins)

• Kernel Code Walk (30 mins)

• Introspection (10 mins)

• Compiler Support (10 mins)

• Driver Interface (40 mins)

• Other topics: Programmable parsers (15 mins)

• Conclusion 5-10 mins

How to Contribute to p4 tc

• Mailing list

https://lists.netdevconf.info/cgi-bin/mailman/listinfo/p4tc-discussions

• Github

Opensource working Group : Meets every 2 weeks

WG Notes (add link)

https://lists.netdevconf.info/cgi-bin/mailman/listinfo/p4tc-discussions

Status

• Progress so far
• SW model

• Test framework

• Compiler backend for generating p4tc scripts

• Introspection

• Not started yet
• Driver and offload hooks

• Some opens on the parser

Driver Interfaces (p4 tc)
Anjali Singhai Jain

October 2022

IPU/DPU Control Plane Topology

HOST1

IPU/DPU

Infrastructure Complex

Control plane Driver

P4 Controller

Block 1

PCIE

Use of SW and HW Dataplane (WIP)

• SW is used for emulating the HW Dataplane and is standalone to
make the Ecosystem ready before HW shows up.

• SW is your fall back for anything that does not fit in HW, or SW is an
extension for HW Dataplane. (Table ran out of capacity)

• Split the pipeline in HW to HW and SW flows (parser in HW decides)
• Example HW does not handle fragmented packets

• A single packet gets processed in HW first and then in SW

Different SW/HW offload models

Model2

HW DP1 SW DP2

SW DP1
(To handle the capacity
issues if Hw runs out of

space.)

HW DP1

Model3

SW Minipackage2

HW
Minipackage1

HW
DP
0

Model4

Two modes of programming

• Slow path in SW on the Infrastructure complex.
• Rule is programmed in reaction to the first packet of the flow missing in SW

• Rule is programmed on the representor from where the packet was reported.
• Identifies the P4 table, the key value, mask and action (action index or immediate action

with data)

• No slow path in SW
• Rule is programmed proactively for the policies etc

• Since the rule is programmed in a table , it can apply to many packets from
different source of packet

Example Flow:

• Control plane driver loads, creates switchdev device, port representors for external ports. Also the driver creates a devlink hook.
Driver registers a callback for block creation/deletion

• Administrator Creates an ingress block using tc commands : Block1

(optional to create an egress block as well.) and adds a minimum of one netdev) (driver is notified of block creation.)

• Adds the rest of the representors to the ingress block1

• Install the p4 tc templates for SW

• Bind the p4 program in SW to tc block1

($ tc filter add block 1 ingress protocol any prio 1 p4 pname myprogram)

• myprogram will get tied to pcie device now.

• Remote P4 controller downloads the P4 package using devlink attached to the on the box.

• tc p4 create table entry

• the kernel will find a pcie device that is tied to block1

(may be there are multiple programs tied to block1.)

• In essence once it finds the pcie device, it makes the ndo ops for adding filter rules (this could be any netdev for the device.)

• The driver gets the following info when a rule is added:
• 1. The P4 program ID 2. table ID 3. Field ID, mask, value tuple 3.a priority 4. action ID and action data/index

(Incase of index, action has to be pre-created.)

