
Generic 128-bit Math API

Marta Plantykow, Milena Olech, Alex Lobakin

Netdev 0x16

October 24, 2022

1 / 31



Agenda

Introduction

128-bit based applications

Mathematical background

128-bit multiplication and division

Introduced API

Performance

Test results

Future work

Summary

2 / 31



Introduction

At this moment no 128-bit computer architecture exists. However,
128-bit operations exists for different purposes.

When such operations exist - CPU performs them natively

However, not every architecture does so and we need a fallback

3 / 31



Introduction

In this work, we propose a generic 128b Math API for the
Linux kernel ready to be used in Precision Time Protocol
(PTP) implementation.

128-bit-based variables allow performing calculations on large
values with greater accuracy without the need for estimates.

4 / 31



128-bit based applications

▶ Hardware performance accelerators - Streaming SIMD
Extensions (SSE) - registers and instructions added to Intel
(CPU) to improve video encoding and decoding.

▶ Graphic accelerators - In some implementations, it has a
pathway 128 bits wide between its onboard processor and
memory.

▶ Cryptography - The Advanced Encryption Standard (AES)
algorithm can use cryptography keys of 128, 192, and 256 bits
to encrypt and decrypt data in blocks of 128 bits.

▶ MD5 hashes produce 128-bit results

▶ ZFS is 128-bit filesystem

▶ IPv6 operates on 128-bit range of addresses
5 / 31



128-bit based applications

▶ Precision Time Protocol (IEEE 1588)
▶ Defines a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems
▶ Supports system-wide synchronization in the sub-microsecond

range putting minimal requirements on network and local
computing resources

▶ The clocks within a system are organized into a leader-follower
hierarchy, in which the clock located at the top of the
hierarchy determines the reference time for the entire system

▶ The protocol applies to both high-end and low-end devices

6 / 31



128-bit based applications

7 / 31



Mathematical background

▶ If the processor supports 128-bit-based native operations, no
manual implementation is required

▶ Some architectures do not support 128-bit operations

▶ Most of them are 32-bit based, so it is crucial to implement
fallback functions using 32-bit based mathematics

▶ 128-bit comparison, addition, and subtraction do not require
complex algorithms

8 / 31



Mathematical background

128-bit processors are used for addressing up to 2128 (over
3.40× 1038) bytes.

This number is greater than the total data captured, created, or
replicated on Earth as of 2018 which was approximated to be
around 33 zettabytes (33× 1021).

9 / 31



Mathematical background

▶ Unsigned integer
From 0 to
340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 455

▶ Signed integer
From
−170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 728
to
170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 727

10 / 31



128-bit multiplication and division

In case of division and multiplication, the following notation has
been used [Knuth, 98]:

(...a3a2a1a0.a−1a−2...)b = (1)

...+ a3b
3 + a2b

2 + a1b
1 + a0 + a−1b

−1 + a−2b
−2 + ... (2)

The most straightforward generalizations of the decimal number
system are received when we take b to be an integer greater than
one and when a′s are required to be integers in the range of
0 ≤ ak < b.

This gives the standard binary (b = 2), ternary (b = 3), quaternary
(b = 4) number systems.

11 / 31



128-bit multiplication and division

(...a3a2a1a0.a−1a−2...)b = (3)

...+ a3b
3 + a2b

2 + a1b
1 + a0 + a−1b

−1 + a−2b
−2 + ... (4)

▶ The dot between a0 and a−1 is called the radix point

▶ The a′s in equation 3 are called digit of representation

▶ The rightmost digit is called least significant digit

▶ The leftmost digit is called most significant digit

12 / 31



128-bit multiplication and division

Let’s assume that we have two numbers u = (um+n−1...u1u0)b and
v = (vn−1...v1v0)b.
The most crucial part is understanding of radix-b notation where
b is the computer word size.

If we have an integer that fills 10 words on the computer whose
word size is 10 10 we receive:

1. 100 decimal digit

2. 10-place number to the base 1010

13 / 31



Multiplication Algorithm

Given nonnegative integers (um−1...u1u0)b and (vn−1...v1v0)b, this
algorithm forms their radix-b product (wm+n−1...w1w0)b.

1. Initialize
Set wm−1,wm−2, ...,w0 all to 0. Set j = 0

2. Zero multiplier?
If vj = 0, set wj+m = 0 and go to step 6.

3. Initialize i
Set i = 0, k = 0

4. Multiply and add
Set t = ui × vj + wi+j + k ; then set wj+k = t mod b and
k = ⌊ t

b⌋
5. Loop on i

Increase i by one. Now, if i < m, go back to step 4;
otherwise, set wj+m = k

6. Loop on j
Increase j by one. Now, if j < n, go back to step 2;, the
algorithm terminates.

14 / 31



Division Algorithm

The difference between the algorithm and ”pencil and paper
method” is that this method creates partial products of
(um−1...u1u0)b × vj for 0 ≤ j < n and adds these products at the
end with appropriate scale factors.

Introduced algorithm does addition and multiplication
simultaneously.

15 / 31



Division Algorithm

Given nonnegative integers u = (um+n−1...u1u0)b and
v = (vn−1...v1v0)b, where vn−1 ̸= 0 and n > 0, we form the radix-b
quotient ⌊uv ⌋ = (qmqm−1...q0)b and the remainder u mod v =
(rn−1...r1r0)b.

1. Normalize
Set d = ⌊ b−1

vn−1
⌋. Then set (um+num+n−1...u1u0)b equal to

(um+n−1...u1u0)b times d . Similarly, set (vn−1...v1v0)b equal
to (vn−1...v1v0)b times d .

2. Initialize j
Set j = m.

3. Calculate q̂

Set q̂ = ⌊ (uj+nb+uj+n−1)
vn−1 ⌋ and let r̂ be the remainder

(uj+nb + uj+n−1) mod vn−1. Not test if q̂ = b or
q̂vn−2 > br̂ + uj+n−2. If so, decrease q̂ by 1, increase r̂ by
vn−1, and repeat this test if r̂ < b.

16 / 31



Division Algorithm

4. Multiply and subtract
Replace (uj+nuj+n−1...uj)b by

(uj+nuj+n−1...uj)b − q̂(vn−1...v1v0)b (5)

This computation consists of a simple multiplication by a
one-place number combined with a subtraction. The digits
(uj+n, uj+n−1, ..., uj) should be kept positive. If the result of
this step is negative, (un+juj+n−1...uj)b should be left as the
actual value plus bn+1, namely as the b′s complement of the
actual value, and borrow to the left should be remembered.

17 / 31



Division Algorithm

5. Test remainder
Set qj = q̂. If the result of step 4 was negative, go to step 6.
Otherwise, go on to step 7.

6. Add back
Decrease qj by 1, and add (vn−1...v1v0)b to
(un+juj+n−1...uj+1uj)b

7. Loop on j
Decrease j by one. Now if j ≥ 0, go back to 3.

8. Unnormalize
Now (qm...q1q0)b is the desired quotient, and the desired
remainder may be obtained by dividing (un−1...u1u0)b by d .

18 / 31



Introduced API

The proposed API defines a
structure that represents
unsigned 128bit-based
variables.

19 / 31



Introduced API

Introduced functions are divided into following groups:

▶ Comparison

▶ Addition

▶ Subtraction

▶ Multiplication

▶ Divison

20 / 31



Introduced API

Division of unsigned 128bit dividend by 128bit divisor

u64 dividend high = 0x6767676721212121;
u64 dividend low = 0x1243252265375421;
u64 divisor high = 0x1111143454354354;
u64 divisor low = 0x1111111114325342;
u128 remainder ;
u128 result;

result = div u128 u128(u128 store(dividend high, dividend low),
u128 store(divisor high, divisor low),
&remainder);

21 / 31



Performance Test

To measure the performance of introduced API, several tests were
performed.

Following functions were chosen to be examined:

1. A function that operates on more than 64-bit values
ice ptp adjfine from the Intel ice driver of the 5.19.5 Linux
kernel (algorithm1)

2. The same function (ice ptp adjfine) from the 6.0 Release
Candidate (algorithm2)

3. The native 128-bit function directly related to the PTP
(algorithm3)

22 / 31



Performance Test

Test procedure:

▶ Each operation was repeated 10000 times

▶ Before and after each operation, the timestamp was taken

▶ Based on the time difference, expressed in nanoseconds,
operation time was calculated

▶ Measurements were taken with and without the new API
usage

▶ Each test was repeated ten times to provide stability and
predictability

▶ To reduce the possible noise, interrupts were disabled while
testing

▶ Average values were calculated and compared

23 / 31



Test results

Results for algorithm1 with and without using 128bit API for
10000 iterations

With 128 Without 128

Time[ns] 2910762 3479241
2889556 3458588
2898945 3456600
2885530 3464868
2885966 3456716
2884493 3466790
2888336 3468363
2904135 3493585
2886087 3457316
2884718 3462869

Average[ns] 2891852,8 3466413,6
Difference 574560,8

24 / 31



Test results

Results for algorithm2 with and without using 128bit API for
10000 iterations

With 128 Without 128

Time[ns] 2910762 2884022
2889556 2886298
2898945 2905804
2885530 2884171
2885966 2900811
2884493 2905661
2888336 2897499
2904135 2887431
2886087 2910105
2884718 2885615

Average[ns] 2891852,8 2894741,7
Difference 2888,9

25 / 31



Test results

Results for algorithm3 with and without using 128bit API for
10000 iterations

Native ops Fallbacks

Time[ns] 2893146 2910706
2894902 2882109
2903383 2906288
2891043 2899066
2890052 2908561
2885330 2900073
2888230 2886179
2884972 2887796
2905913 2887784
2888076 2891369

Average[ns] 2892504,7 2895993,1
Difference 3488,4

26 / 31



Test results

∗ 128-bit API delivers better results in all tested scenarios.

∗ Although the primary goal of the API introduction was not to
improve the performance, but to introduce generic API, this
change did not negatively affect performance.

∗ Operation time was reduced by up to 547,5 µs per 10,000
operations.

27 / 31



Future work

1. The code will be submitted to the Linux kernel Mailing Lists.

2. Later works may include tree-wide conversions and switching
more drivers and subsystems (crypto etc.) to this solution.

28 / 31



Summary

▶ Proposed solution is an easy-to-use kernel API for 128-bit
operations

▶ For addition and subtraction basic math operations are used

▶ Multiplication and division require dedicated algorithms

▶ Tests prove that introduced API does not degrade analyzed
functions’ performance

▶ The major benefit of introduced API is improvement of the
calculations precision

29 / 31



References

Donald E. Knuth (1998)

The art of computer programming

Stanford University

30 / 31



Q&A

31 / 31


	Introduction
	128-bit based applications
	Mathematical background
	128-bit multiplication and division
	Introduced API
	Performance
	Test results
	Future work
	Summary

