
Enable Time-Sensitive Applications in Kubernetes with Container Network
Interface Plugin Agnostic Metadata Proxy

Ferenc Orosi, Ferenc Fejes
Ericsson Research TrafficLab

Budapest, Hungary
ferenc.{orosi, fejes}@ericsson.com

Abstract

Application deployment in cloud environment is dominated
by Kubernetes-orchestrated microservices. Provides a secure
environment, networking, storage, isolation, scheduling, and
many other abstractions that can be easily extended to meet
our needs. Time-Sensitive Applications (TSAs) have spe-
cial requirements for compute and network. Deploying TSAs
in Kubernetes is challenging because the networking imple-
mented by Container Network Interface (CNI) plugins is not
aware of the traffic characteristic required by Time-Sensitive
Network. Even if a network interface supports TSN features
(e.g.: Scheduled Traffic) and a modified CNI plugin is aware
of this interface, the pod network isolation built on top of Linux
deletes the metadata required for TSN protocols to work with.
We propose TSN metadata proxy1, a simple architecture that
allows any TSA microservice to use the TSN capabilities of
the physical NIC, without any modification. This architecture
is tightly integrated with the Kubernetes networking model,
works with popular CNI plugins, and supports services such as
ClusterIP, NodePort, or LoadBalancer without additional con-
figuration. Unlike former proposals, this architecture does not
require either bypassing the Linux kernel network stack, direct
access to the physical NIC, escalated privileges for the TSA
microservice, or even modification of the TSA.

1. Introduction
High-tech manufacturing, automotive, avionics, defense, pro-
fessional audio-video and similar domains have deterministic
communication requirements. These are high reliability, no
packet loss due to congestion, low latency variation (jitter),
and bounded maximum latency. An application with these
network requirements is called a time-sensitive application
(TSA). To ensure proper TSA operation, both compute and
network specific requirements have to be fulfilled.

1.1 Time-Sensitive Networking Overview
On the network side, Time-Sensitive Networking (TSN) pro-
vides Ethernet networks with tools to meet meet the deter-
ministic communication requirements. The TSN Task Group
[1], part of the IEEE 802 Working Group, is driving the stan-
dardization of these protocols and algorithms. These stan-
dards enable vendor-independent TSN solutions and also the

1https://github.com/EricssonResearch/
tsn-proxy

implementation of these TSN features in the mainline Linux
kernel. The TSN implementation in the Linux kernel is dis-
cussed in [2].

A TSN network can be dimensioned and planned for the
TSA requirements, so that congestion-induced packet losses
do not happen under normal operation. Some TSN queuing
solutions require synchronized notion of time. As a result,
the time slots of different traffic classes and applications are
coordinated end-to-end to meet the allocated bandwidth and
latency requirements.

1.2 Time-Sensitive Computing
On the compute side, operating systems such as specialized
RTOSs or general-purpose Linux with real-time scheduling
(part of the mainline since version 6.12) are capable of meet-
ing hard real-time deadlines for TSAs. For the rest of the
work, we focus on Linux-based deployment, but details of
real-time task scheduling and supporting APIs are out of
scope. Linux provide API for the TSA to express timing (or
deadline) and priority requirements to the TSN. It also pro-
vides a common configuration interface for the operator to
setup the TSN forwarding in the network interface.

The compute node connects to the network via a TSN-
enabled NIC. Without this, Linux does it’s best to emulate
TSN features in software, but these may not meet the tight
timing requirements, e.g.: software-based time synchroniza-
tion is orders of magnitude less accurate without PTP [3] ca-
pable NIC.

1.3 Time-Sensitive Application Microservice
Deployment on Scale

For large-scale (hundreds and above) deployment of tradi-
tional applications as microservices has been one of the main
directions of the last decade. Kubernetes [4] has become
the de-facto orchestration platform for deploying, operating,
monitoring, and managing microservices. The platform is
easily extensible, with customizable pod scheduler, network,
storage and device management, as well as the API itself with
custom resource definitions (CRDs).

However, orchestration of TSAs in Kubernetes is challeng-
ing for various reasons, which are discussed in detail in the
following chapter and in the related work [5, 6, 7, 8, 9]. The
main difficulties can be summarized in the following points:

https://github.com/EricssonResearch/tsn-proxy
https://github.com/EricssonResearch/tsn-proxy


1. Lack of abstractions needed to request real-time scheduling
for TSA microservices

2. Cluster-wide time synchronization with PTP up to the TSA

3. Centralized policing and packet scheduling of traffic
classes based on their cycle times and priorities

4. Unprivileged access to TSN NIC hardware capabilities
from TSA microservices

5. Provide network security and isolation for the TSA while
passing per-packet scheduling metadata to the TSN NIC

6. Rely on established send/receive primitives (e.g.,
Linux/BSD socket API) to avoid modification of the
TSA

7. Integration with various Kubernetes network implementa-
tions (CNI plugins) and container runtimes

Our work, as well as the related work to which we refer, fo-
cuses mainly on items 4.-7. While the remaining challenges
are also the subject of active research, we consider them out
of scope. To cope with challenges 4.-7., we propose a TSN
metadata proxy (referred as TSN proxy in rest of the paper
for simplicity). This is a small network plugin for Kuber-
netes, proposed to use in companion with full-featured, in-
dustry grade third party network plugins. TSN proxy does
not require modifications in the TSAs, their container images,
Kubernetes or the third-party network plugins. As such it is
very easy to integrate into a Kubernetes cluster by applying
only a manifest file as usual.

2. Time-Sensitive Applications with Kubernetes
Kubernetes is a general framework, it does not distinguish be-
tween TSA pods and normal pods. This does not preclude the
orchestration of TSA pods, but data plane and control plane
specificities must be taken into account. In this chapter, we
will look at these peculiarities and the challenges that arise
from them.

2.1 Control plane
Kubernetes CNI plugins are responsible for implementing the
network configuration [10, 11]. Examples of prevalent CNI
plugins are Antrea, Calico, Cilium, CN2, Weave or smaller
ones with limited functionality like Flannel, Kindnet. Usually
a single CNI plugin configures the entire Kubernetes cluster
network. It is not specified how this is done, control plane just
assigns an IP address and network namespace to the newly
started pod [12]. Challenge: CNI plugin diversity, many
implementation strategies may prevent TSA operation.

How that IP is accessed, or how the pod reaches other pods
or the outside world, is entirely up to the CNI plugin. The plu-
gin can configure this in a kernel-bypassed way e.g. DPDK,
AF XDP [13] or via traditional Linux network configura-
tion (iproute2 package tools [14]). The Kubernetes control
plane components e.g.: etcd, kube-apiserver, kube-scheduler,
CoreDNS can only access this IP address. This is a problem
for TSAs that do not use Layer 3 networking, but we assume
here only TSAs communicate over IP. Challenge: control
plane has limited knowledge of the network.

The use of multiple plugins is allowed and supported as
standard, in which case control plane will run them in order.
In this case, each plugin sees the output of the previous ones
in standard JSON format. It is important that the first CNI
plugin receives the IP address from control plane, which it
configures for the pod. Typically, it also creates the pod’s
(usually virtual) network interface [15] and performs most of
the configuration. This primary CNI plugin is usually one of
the applications mentioned above, and most of the time no
other is needed.

There are frameworks that allow the operator to assign
multiple network interfaces to a pod at the same time. This
allows multiple CNI plugins to be used together, with each in-
terface accessing a network configured by a different plugin.
We mention this because it is a popular method for TSN net-
work access, and we will describe such proposals later. This
is done by making the primary CNI plugin a meta-plugin that
calls additional CNI plugins, for example some of the ones
from the list above, or a separate TSN CNI plugin. Com-
monly used meta-plugins are Multus [16] and CNI Genie
[17]. In this case, the pod will have a managed IP address
and interface visible to the control plane, and one or more
additional interfaces outside the control plane’s scope, with
their own IP addressing.

It is important to point out that this is not a standard opera-
tion and is not supported by Kubernetes control plane. Active
work has been going on for several years to extend Kuber-
netes with an API to support this functionality in the Multi-
net SIG [18]. The status of the Multi-net SIG is uncertain
and based on the user-stories section in the documentation,
it represents a significant configuration burden. Challenge:
multiple pod interface and multiple CNI plugins not offi-
cially supported.

In our view, TSA pods do not need a separate interface and
data plane for TSN communication. A small addition of net-
work access configured by a primary CNI plugin is sufficient.
What has made this multiple interface the main direction in
other proposals, however, is the delivery of TSN metadata
to a physical NIC for TSN network scheduling. Because, as
we will see in the next subsection, this is not trivial if we
follow the Kubernetes isolation rules. Bypassing these with
a secondary interface and data plane simplifies the situation.
Main challenge: enable TSA pods and remain consistent
with the Kubernetes control plane.

2.2 Data plane
Kubernetes works with containers that are available in a lo-
cal or remote registry. These containers bundle the TSAs with
their dependencies. Importantly, in the industry, these are cre-
ated as an end product of a CI pipeline, testing them is part of
the process. Therefore, patching or modifying them after the
fact is not part of best practice, and may not even be possible.
Challenge: access to the TSN services must be transpar-
ent to the application.

The container runtime orchestrated by Kubernetes exe-
cutes the containerized TSA. There are several such runtimes,
e.g. podman, Docker engine, containerd. What they have
in common is that they implement container isolation using
the Linux kernel namespace subsystem. Similarly, network



isolation of containers is implemented using Linux network
namespaces through CNI plugins. The containerized TSA
also runs in such a network namespace and does not interfere
with the host and other container networks.

The struct sk buff (hereafter skb) structure repre-
sents the packet in the Linux network stack with its contents
and metadata. This is the most important data structure for
the Linux packet processing, used both for ingress and egress
directions. When any application send data through a socket,
skb is allocated in the kernel and processed all the way to
the network device driver which only free the skb when
the data sent to the wire. The ingress direction is similar,
to speed up processing the driver usually takes skbs from a
pre-allocated pool for the received data, which only released
when the packet dropped or the userspace consumed the re-
ceived data.

Part of the network isolation is that the metadata of skb is
stripped before moving to another namespace. This is a prob-
lem because TSN-aware packet scheduling requires meta-
data. The two most important metadata are timestamp and
priority (skb->tstamp and skb->priority). These
are set by the TSA through the socket API as SO PRIORITY
and SO TXTIME auxiliary messages (also known as a con-
trol messages) to the data being sent. Linux’s TSN queueing-
disciplines (Qdiscs) e.g. taprio, etf, mqprio (in case
of frame preemption) schedule packets based on this. These
Qdiscs are configured on the node level, not inside the pod.
Therefore when the skb originates from the pod reach them,
they already went through the isolation steps. Also, if the
NIC is TSN capable, it can transparently offload these Qdiscs,
resulting in very accurate scheduling. VLAN priority tags
are also set based on the skb->priority value. Chal-
lenge: Linux namespace isolation remove every metadata
including the TSN related ones.

Metadata deletion is done in the kernel by the
skb scrub packet function [19], and skb->priority
is deleted by dev forward skb. The latter has not much
to do with namespace isolation, it moves the skb sent
from one interface to the receive queue of another interface
(which is the common scenario in container networking). The
skb->markmetadata is also deleted, but this cannot be used
by TSAs because it is used by CNI plugins for their own poli-
cies. It is worth noting that if there is no network namespace
crossing, skb->mark and skb->tstamp are not deleted.
This means that during packet encapsulation, these metadata
fields can carry TSN information. However, since the TSA
runs in an isolated pod, these metadata fields are also deleted,
so they cannot be used. Challenge: there is no option to
configure a set of metadatas to exclude from the isolation
process.

3. Related Work
There is also academic and industrial research on cloudifica-
tion of industrial applications. This includes some that define
a more remote, end-to-end architecture and some that look at
low-level details. In this session, we will look at work whose
problem statements are similar to ours and to each other. The
focus is on getting metadata for TSN network scheduling to
the NIC, not hard real-time scheduling and CPU partitioning.

Related work addresses this in different ways and also dis-
cusses some challenges

FabOS [5] is one of the first papers to look at containeriza-
tion of vPLCs. vPLCs are specialized TSAs, therefore this
use-case fits well in our scope. It describes the industrial en-
vironment very well and proposes an architecture to integrate
CUC/CNC into Kubernetes. The implementation is based on
Multus, creating VLAN subinterfaces on the physical NIC,
but no further details are provided. Unfortunately, no con-
figuration examples or open source code is provided, so the
operator would have to figure out exactly what is needed to
use it.

Oechsle et. al. [6] presents a high-level, end-to-end so-
lution for cloud-native TSAs. No implementation details are
provided, but what is revealed is that a new application API
would be required. The send/receive primitives would be
given a flow ID as a parameter to facilitate scheduling. Un-
fortunately, this would require modification of existing appli-
cations. It is also not revealed how it would integrate with
Kubernetes, or how it would use the TSN hardware capabili-
ties.

Wen et. al. [7] extends Cilium, a widely used CNI plugin
based on eBPF, with TSN traffic filtering. It redirects TSN
traffic to the host NIC using XDP. From the measurements,
the benefits of this are not clear, and it is a kind of kernel
bypass, so egress policies or NAT rules are skipped. There
are also no details on how a more complex deployment would
work with this solution, nor support for TSN NICs.

Rosa et. al. proposes a Multus-based CNI plugin that pro-
vides a TSN network for pods [8]. The TSN network is thus
provided by a kernel bypass solution using the DPDK. It uses
LD PRELOAD to route packets to the TSN network, replac-
ing the send/recv primitives. While this solution improves
forwarding latency, the DPDK makes the hardware capabili-
ties of the TSN NIC unusable. There is no actual Kubernetes
integration based on the code (contrary to what the article
claims), and Docker requires manual configuration of Linux
commands in a cumbersome manner. However, the imple-
mentation description is detailed enough that a dedicated op-
erator could build their own version around the proposal. But
with all things considered, the proposal might not met the re-
quirements of a real-life deployment.

Balla et. al.’s proposal [9] is also a Multus-based solution,
but is much closer to a real-world deployment. The appli-
cation pods here also use modified send/recv primitives that
send the packet and TSN metadata to shared memory. From
there, a monolithic application reads it and delivers it to the
physical interface via a MACVLAN interface. Measurements
show that the hardware capabilities of the TSN NIC make
the timing of packet delivery very accurate indeed (∼10ns).
This places them in the correct timeslot for IEEE 802.1Qbv,
resulting in prioritized TSN traffic over best-effort. There
are some shortcomings in the proposal. This is also a ker-
nel bypass with shared memory and is built on an alternate
network, so application egress and ingress policies are not
enforced. The Kubernetes integration is not detailed, nor is
how this would work with servicers (ClusterIP, NodePort,
LoadBalancer, etc.). However, it would be easy to over-
come the shared memory kernel bypass by creating the pod



Node

TSA pod

eth0

CNI bridge

veth0

TSN NIC

TSN metadata store

addr metadata

skb1 tstamp1, prio1
... ...

skbN tstampN, prioN

save
metadata

restore
metadata

Tracking

fexit/skb_clone

fexit/skb_copy

...

update address

pod netns node netns

metadata proxy (eBPF)

Figure 1: Architecture of the TSN metadata proxy. A proxy
instance on every node in the cluster setup a storage for the
TSN metadata. With eBPF it collects the metadata from each
packet into the storage and restores it before reaching the TSN
NIC. A tracking eBPF program update the memory address
of the packet if changes during the forwarding.

MACVLAN interfaces directly through the CNI plugin.

4. Proposed Architecture
Prior work as discussed above successfully address some of
the challenges but fails in others. Some solution required to
used as a primary CNI plugin (or sub-plugin of Multus) even
though they are limited in functionalities. While modifying
a primary CNI plugin (as Cilium in [7]) to support TSN is a
good direction, it has to be part of the plugin’s mainline code,
because these frequently updated with new functions, bug-
fixes and security patches. Some proposals leverage kernel-
bypass for reduced latencies. This not only prevent using the
NIC TSN functionalities, but often comes with custom built
kernels and modules as well. TSA modification or custom
socket API primitive hooks also part of some proposals. Our
proposal does not require TSA modification or socket API
hooks. Also, we do believe instead of changing the pri-
mary CNI plugin, we have to leverage them and equip
those with TSA support in a way not tied to a particular
plugin, instead works with most of them. Lastly, our pro-
posal does not require to bypass the whole Linux network
stack, which has compatibility, security and observability
advantages.

The main goal is to overcome these challenges with TSN
proxy which is tightly integrated into Kubernetes through
standard interfaces. In other words, a standard kubectl
apply would do all the necessary configuration without
manual intervention. This allows scalability of the proposal
to multi-node and pod environments.

The tasks can be divided into two parts, the first is the

preparation of the node for the TSN proxy, the second is the
network configuration of the pods. The resulting environment
summarized on Figure 1.

4.1 Steps of the node initialization
1. The TSN proxy DaemonSet creates an eBPF [20] hashmap

for the metadata on each node. The DaemonSet ensure
the container in the manifest are deployed on each node
in the cluster in one instance. The eBPF hashmap will be a
node-wide accessible storage of the TSN metadata, avail-
able from all network namespace including the node’s de-
fault namespace.

2. Installs the TSN proxy binaries on the node, including the
TSN proxy CNI plugin script executed when a new pod
started, the eBPF programs to save, restore metadata and
track the packet as well as a statically built bpftool in
order to allow execution on nodes where it is not available
or old version installed.

3. Adds the TSN proxy to the list of CNI plugins so that it
runs last when the primary CNI plugin is done. E.g.: if the
primary CNI plugin is Flannel, it parse the .conflist
JSON in /etc/cni/net.d folder and insert the TSN
proxy CNI plugin after Flannel in the list.

4. On the interface specified in the manifest (e.g.: the TSN
NIC), it loads a tc egress program responsible for
restoring the metadata. This is done in the node’s default
namespace. The tc egress eBPF programs executed on
each packet (skb) right before they passed to the Qdisc.

5. Installs an eBPF fexit probe to track skb copies. The
probe can execute arbitrary eBPF program which has ac-
cess to the function arguments, local variables, and the re-
turn value of the inspected function (more on that later).

6. Starts a garbage collector that runs every few seconds,
which responsible to remove old entries from the metadata
hashmap. Why it is necessary discussed later.

4.2 Steps of the pod initialization
1. When the pod is created, the kubelet creates the names-

paces, including the network namespace for the pod.
2. The primary CNI plugin creates the interface to the pod,

this is usually a connected pair of veths [15], one instance
of which is in the pod and the other in the host network
namespace.

3. The CNI plugins are executed in order as defined in the
CNI config, after the primary plugin the TSN proxy setup
is executed. This assigns a tc egress eBPF program to
the pod’s veth interface (this is inside the pod’s network
namespace), which does the storing of the metadata. Im-
portant to note here, the skb tracking and metadata restore
programs already configured during the node initialization
detailed before.

The metadata store uses the eBPF tc egress entry
point, not the one where the isolation and metadata deletion
is done, skb scrub packet [19]. This is because it is tar-
geted only at pods that are running TSA (the node may have
pods running where it is unnecessary because it is not running



TSA). Important to emphasize the full payload of the packets
are not copied or modified by the proxy. Only the metadata
fields proxified, and this is a very lightweight operation be-
cause those are 12 bytes in summary (4 bytes priority, 8 bytes
timestamp).

4.3 Tracking the packets through the node
After leaving the pod, the fate of the packet depends on the
primary CNI plugin configuration. It may simply be bridged
or routed to another pod within the node and never reach
the physical network. In a more realistic setup, it will be
sent through the physical NIC to the TSN. But before that,
it may be encapsulated in a tunnel, dropped by an egress pol-
icy, or modified by NAT rules. In some cases, the original
skb structure may be reallocated, causing the change in its
memory address. Without the address, there is no way to
look up the metadata for the packet. To overcome this, we
need to track the packet inside the node. More specifically,
we need to identify and track when the memory address of
the skb representing the packet changes. If the memory ad-
dress changes, the proxy must update it as well, adding a new
entry to the BPF map with the new address and the known
metadata.

For tracking, two alternative options are possible. One is
the method used by the pwru packet tracking software [21],
which is also used by the TSN proxy. It puts a fexit eBPF
probe on the skb clone kernel function, which copies skb
structure where necessary. The fexit probe is similar to
kretprobe, but it also works with type information so it
is more convenient to use. This probe is injected and exe-
cuted right after the inspected kernel function returns. This is
enough information to implement the tracking functionality.

When the skb is copied by the skb clone, the eBPF
probe checks if the metadata hashmap contains a source skb
address. If so, it will re-add the metadata using the new skb
address as a key. This way, when the metadata recovery pro-
gram is run, which already sees the new skb address, it can
successfully assign the original metadata.

Another, simpler tracking method is to use the
skb->data address as the key instead of the skb ad-
dress. The new skb->data field after skb clone is also
equal to the old data field. In practice this has also proved
sufficient, but more extensive testing would be needed to
see if it is robust enough. This solution does not require a
separate fexit probe package tracker, only the metadata
saver and restorer.

Some packets sent by the TSA might conceivably be
dropped and not get out of the node. This could be caused by
a firewall rule or configuration problem. Therefore, there is
a periodic garbage collection that looks through the hashmap
and deletes anything with a timestamp that is too old. When
the packet reaches the TSN NIC and the metadata is restored,
it is also deleted from the hashmap.

5. Operation Example
The test consisted of a simple single node Kubernetes en-
vironment. We focused on integration and functional-
ity, performance testing was not performed. We used

0us 5us 10us 15us 20us 25us 30us 35us 40us
Relative RX timestamps

0

20

40

60

80

100

TA
PR

IO
 C

yc
le

 #

Listener #1 recv
Listener #2 recv
Prio #1 gate opening
Prio #2 gate opening
Best-effort gate opening

(a) Without TSN metadata proxy

0us 5us 10us 15us 20us 25us 30us 35us 40us
Relative RX timestamps

0

20

40

60

80

100

TA
PR

IO
 C

yc
le

 #

Listener #1 recv
Listener #2 recv
Prio #1 gate opening
Prio #2 gate opening
Best-effort gate opening

(b) TSN metadata proxy enabled

Figure 2: RX timestamps mapped to 802.1Qbv (taprio
Qdisc) cycles. Without the proxy (2a), the priority info lost
and every packet uses the best-effort timeslot. With TSN
proxy (2b) the priorities preserved and the packets received
within their timeslot.

Ubuntu 24.04, 24.10 and Debian Trixie GNU/Linux dis-
tributions with kernel versions 6.8, 6.11 and 6.12 respec-
tively. The TSN proxy was implemented as a Dae-
monSet and deployed with the kubectl apply -f
tsn-metadata-proxy.yaml command. We used two
popular Kubernetes distributions, Minikube (v1.34) and
KIND (v0.24). As the main CNI plugin, we used Flannel,
but we confirmed that the TSN proxy works with other CNI
plugins as well, such as Kindnet and Calico.

Our test scenario had two TSA talkers running in pods,
generating priority 1 and 2 packets. We also had two listen-
ers outside the node, where we capture the received packets
with their timestamps. On the node, we configured taprio
Qdisc with 40 usec cycle time. This is divided into 3 gates
(timeslots): 0-10 µs prio 1, 10-20 µs prio 2, and 20-40 µs for
best effort with prio 0 (which is the default for all packets). If
a packet reaches the taprio outside of it’s cycle, it will be
queued until it’s gate opens.

Without the TSN proxy, the talker’s priorities are deleted
before they reach the NIC and the taprio. As a result, they
fall into the best-effort timeslot shown in Fig. 2a. Note that
packets received outside of their timeslot are transmitted im-
mediately after their gate opens. Therefore, we have more
timestamps right after the gate opens than in the rest of the
slot. With TSN proxy (Fig. 2b), the priorities of the TSA
packets are preserved. They are placed in their proper time
slots and respect the correct gate openings. As one can see in
the figure, listener #1 receives packets in timeslot prio 1 and



listener #2 receives packets in timeslot prio 2.
It is important to note that the gate configuration in this sce-

nario may differ from a real TSN scheduling. This scheduling
is designed to make a point and help understanding.

6. Conclusion
We have designed and evaluated a TSN metadata proxy that
allows unmodified TSAs to be deployed as microservices us-
ing Kubernetes. The TSN proxy is implemented as a simple
extension CNI plugin, which uses eBPF to store the metadata
required for scheduling. This CNI plugin is deployed as a
companion to a primary CNI plugin, which handles the inter-
face, address, routing, and policy configuration of the pods.
Finally, we compare our solution to other work and discuss
the main differences.

Acknowledgement
This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme through
DETERMINISTIC6G project under Grant Agreement no.
101096504. The authors would like to thank Dr. Balázs
Varga, Dr. János Farkas, István Moldován, Dr. Miklós Máté,
and Dr. János Harmatos for their help and insightful feed-
back.

References
[1] “IEEE Time-Sensitive Networking (TSN) Task Group.”

https://1.ieee802.org/tsn/, access.: 2025-
01.

[2] F. Fejes, P. Antal, and M. Kerekes, “The TSN Building
Blocks in Linux,” in NetDev 0x16, 2022.

[3] “IEEE 1588-2019.” https://standards.ieee.
org/ieee/1588/6825/, access.: 2023-08.

[4] “Kubernetes homepage.” https://kubernetes.
io/, access.: 2025-01.

[5] M. Eppler, J. Schenk, T. Gruner, A. Zirkler, H. Mueller,
and A. Blenk, “FabOS: Hooking up Container Platforms
with Time-Sensitive Networks,” IIoT-NETs ’23, (New
York, NY, USA), p. 29–34, Association for Computing
Machinery, 2023.

[6] S. Oechsle, F. Frick, M. Walker, A. Lechler, and A. Verl,
“Endpoint Architecture for Distributed Real-Time Ap-
plications Based on TSN,” in 2024 IEEE 20th Interna-
tional Conference on Factory Communication Systems
(WFCS), pp. 1–8, 2024.

[7] J. Wen, J. Ge, Z. Zhang, H. Li, Y. E, and B. Wu, “A
Time-Sensitive Cloud-Native Network Based on eBPF,”
in 2024 27th International Conference on Computer
Supported Cooperative Work in Design (CSCWD),
pp. 2577–2582, 2024.

[8] L. Rosa, A. Garbugli, L. Patera, and L. Foschini, “Sup-
porting vPLC Networking over TSN with Kubernetes in
Industry 4.0,” IIoT-NETs ’23, (New York, NY, USA),
p. 15–21, Association for Computing Machinery, 2023.

[9] D. Balla, I. Moldován, M. Máté, M. Maliosz, and J. Har-
matos, “Time Sensitive Industrial Applications in Ku-
bernetes,” in NOMS 2024-2024 IEEE Network Opera-
tions and Management Symposium, pp. 1–7, 2024.

[10] “Kubernetes Network Plugins.”
https://kubernetes.io/docs/
concepts/extend-kubernetes/
compute-storage-net/network-plugins/,
access.: 2025-01.

[11] “The Container Network Interface.” https://www.
cni.dev/, access.: 2025-01.

[12] “The Kubernetes network model.”
https://kubernetes.io/docs/
concepts/services-networking/
#the-kubernetes-network-model, access.:
2025-01.

[13] Toke et.al., “The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System
Kernel,” CoNEXT ’18, p. 54–66, ACM, 2018.

[14] “Github mirror of iproute2.” https://github.
com/shemminger/iproute2, access.: 2025-01.

[15] P. Emelianov, “ Virtual ethernet device (tunnel) ,”
2007. https://lore.kernel.org/netdev/
46386DFB.7090109@sw.ru/#t, access.: 2023-
08.

[16] “Multus-CNI.” https://github.com/
k8snetworkplumbingwg/multus-cni, ac-
cess.: 2025-01.

[17] “CNI-Genie.” https://www.cncf.io/
projects/cni-genie/, access.: 2025-01.

[18] “Multi-Network SIG.” https://github.com/
mskrocki/enhancements/blob/mn-req/
keps/sig-network/3698-multi-network/
README.md, access.: 2025-01.

[19] “Linux kernel skb scrub packet function.”
https://elixir.bootlin.com/linux/
v6.12/A/ident/skb_scrub_packet, access.:
2025-01.

[20] D. Thaler, “BPF Instruction Set Architecture (ISA).”
RFC 9669, Oct. 2024.

[21] “Github page of Packet Where Are You? (pwru).”
https://github.com/cilium/pwru, access.:
2025-01.

https://1.ieee802.org/tsn/
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/1588/6825/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://www.cni.dev/
https://www.cni.dev/
https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/services-networking/#the-kubernetes-network-model
https://github.com/shemminger/iproute2
https://github.com/shemminger/iproute2
https://lore.kernel.org/netdev/46386DFB.7090109@sw.ru/#t
https://lore.kernel.org/netdev/46386DFB.7090109@sw.ru/#t
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
https://www.cncf.io/projects/cni-genie/
https://www.cncf.io/projects/cni-genie/
https://github.com/mskrocki/enhancements/blob/mn-req/keps/sig-network/3698-multi-network/README.md
https://github.com/mskrocki/enhancements/blob/mn-req/keps/sig-network/3698-multi-network/README.md
https://github.com/mskrocki/enhancements/blob/mn-req/keps/sig-network/3698-multi-network/README.md
https://github.com/mskrocki/enhancements/blob/mn-req/keps/sig-network/3698-multi-network/README.md
https://elixir.bootlin.com/linux/v6.12/A/ident/skb_scrub_packet
https://elixir.bootlin.com/linux/v6.12/A/ident/skb_scrub_packet
https://github.com/cilium/pwru

	Introduction
	Time-Sensitive Networking Overview
	Time-Sensitive Computing
	Time-Sensitive Application Microservice Deployment on Scale

	Time-Sensitive Applications with Kubernetes
	Control plane
	Data plane

	Related Work
	Proposed Architecture
	Steps of the node initialization
	Steps of the pod initialization
	Tracking the packets through the node

	Operation Example
	Conclusion

