Al Networking - RoCE v2 and netdev

David Ahern, Leon Romanovsky

March 2025

Introduction

e Goal of this workshop

Normalize discussions within netdev community that involve any relevant
networking transport with Linux based APIs

e Al networking is very relevant today

Demands for high throughput and low latency drives a lot of networking research and
discussions

e Al networking primarily driven by RDMA over ethernet - RoCEv2

RoCEV2 is a standards based transport protocol over UDP

Agenda

e Set a foundation for Al networks

e Overview of socket networking vs verbs and RoCEv2

e Why RoCEv2 has become the dominant protocol for Al networks
e Latest advances for socket networking and expectations

e Reuvisit the proposal for using Linux TCP with QPs

Want this to be interactive. Ask questions as we go. Defer as needed if we hit a time crunch.

Al Training Networks

Large number of hosts and GPUs ' Al Training Node (server)
o Meta: 24k GPUs across 3k nodes, 400 Gbps ports e Merory

m targeting upwards of 128k GPUs across 16k hosts

(=
o xAl: 100k GPUs in a single RDMA fabric, 400Gbps port E i @

m Colossus - targeting upwards of a million GPUs

100s of billions to now trillions of parameters for models
o Large data sets moved between nodes and GPUs PCle PCle

switch switch

Training time for each round dominated by tail latency NICﬂ &IC_B
Specialized, dedicated ethernet networks for training oPU R

o Lossless, rail design

Focus here is networking within each host in such clusters

Required Characteristics of Host Networking

e Focus is a few large flows running at 100s of Gbps
o vs millions of flows per host
o 400Gbps port per GPU — 8 flows running at 400 Gbps

e Get the OS out of the way of the data path
o At 100+Gbps every cycle matters
o Every system call, generic feature and hook is just overhead

e Eliminate memory copies

e Al training leverages high performance GPUs and high speed NICs
o NIC hardware needs to read / write payload directly from / to GPU memory

o H/W needs to land packet payloads in proper order relative to memory / buffers posted for specific
messages

m Handling packets that arrive out-of-order is a hardware and transport problem

o Completions for work requests are in order

Required Characteristics of Host Networking

e Leverage hardware
o Ethernet protocol headers are simplistic and repetitive - generating wire packets is mechanical process

m Hardware is really good at repetitive tasks

o Similar to TSO/GSO - packet headers + large payload

m Hardware updates protocol headers as needed (e.g., TCP Seq number, checksums, payload lengths)

e Avoid packet drops
o Retransmits are expensive for flow rates and time to completion
o Congestion control - slow down Tx side when Rx side gets overwhelmed

netdev and Linux Networking Stack o

 net_device representer for ports

userspace

o Hold port state - up / down, carrier, speed, mtu — ,
o Reference for network addresses, neighbor entries, FIB socket API }

entries

TCP] UDP

e Page pool for Rx packet buffers

e Socket based networking ’Ty] PIIPve
subsystem

addresses

FIBs

el

o e.g., TCP/UDP L4, IP/IPv6 L3
neighbor
e System calls in the datapath cache
e ZC APIs now exist for payloads &ﬂ hpdetg (offioad ops)
e Hooks for a lot of infrastructure Rx buffers
o packet taps, netfilter, tc, ebpf e
H/W queues

H/W
(queues, flow steering
protocol header updates when slicing)

IB Verbs Software Vertical Stack

Open-source and community driven
e Kernel:
HW modules - configure devices
SW modules - simulate RDMA HW
IB/core - provides UAPI and internal verbs API
ULPs - implement extra functionality on top of verbs

O O O O

e rdma-core:
o libibverbs - exposes verbs to userspace

]] userspace
o librdmacm - connection management API

{ librdmacm J

|

libibverbs

o providers - vendor support code for verbs kernel

e Kernel modules and their rdma-core respective
providers needs to be seen as one piece

Basic verbs terminology
e UCTX - user context
e PD - protection domain
e QP - queue pair
e MR - memory region

CQ - Completion Queue

RQ - Receive Work Queue
SQ - Send Work Queue

control path

yied ejep

J ‘ provider
v B
verbs API
core verbs driver cal lca S
d for| |for| |SQ| |RQ
Y SQ| |RQ
H/W specific IB
driver
Y L
H/W

RDMA Data path

e Completion Queue, Receive Queue, Send Queue
o H/W queues managed by userspace
o Work requests submitted via SQ and RQ
o CQ for notifications when WR is complete

e Message based transfers
o Each WR in RQ, SQ equals 1 message
o WR can reference an sg list with many buffers

e Opcodes

o SEND
m Rx side posts recv work request - buffers for expected incoming message (or max message size)
m Tx side posts a send work request; hardware creates wire packets. Very similar to a large TSO packet
m RC QP and SEND is the closest thing in RDMA world to netdev transaction

o RDMA_WRITE - no Rx buffer needed; writing to specific address and length

o RDMA_READ - lesser used opcode
B Requester knows exact buffers needed for a response
m Local end posts Rx buffers for a request
m Sends READ request to pull data from a specific address and length

IB Stack and netdev

e Qut-of-band communication messaging
o Socket based or a second QP

e Connection Manager can be socket based userspace

Process

rdma-core

‘ libc

J ‘ liburing

Memory
regions

|

vendor
provider

kernel

e gid cache - Addresses on netdev

e Address handles leverage FIB and neighbor
lookups

o [IB port state tracks netdev state eache.

o

socket API

ring J

TCP ‘ UDP

uverbs APls
1 connection

manager

IP/IPv6

B ———
addresses > gid cache
FIBs - address

o up/down state

o RoCE MTU based on netdev MTU [j

e Data flow offloads are controlled from netdev ops

o IPsec - transparent for IB stack, rely on netdev

Rx buffers

vectors
neighbor

cache

S
netdev
(offload ops)

routing

o MACsec - connected to IB stack through GID
entries, IB stack manages their lifetime, everything
else through netdev

H/W queues

netdev driver

netdev notifiers: ibdev

mtu, port state

ib driver

Yied ejep

H/W
(queues, flow steering

protocol header updates when slicing)

RoCE v2

Standardized protocol

RDMA over IP/ethernet networks
ethernet + [P/IPv6 + UDP + BTH + operation specific transport headers
Well known destination port

Source port is random for entropy like other UDP based tunneling protocols
QP flow steering based on QPN in BTH

O O O O

Basic RDMA ops and headers
o SEND - only BTH (base transport header)
o RDMAWRITE - BTH + reth extension header
o RDMA READ - BTH + reth and aeth extension headers

Requester - responder - completer model

Message semantics
o Multiple packets in a message use FIRST, MIDDLE, LAST modifications to opcode
o H/W offload for large messages is similar to TSO

Packets expected to arrive in-order

Networking Performance

e Tests with ConnectX-7 (400G ports)
o easy, side-by-side comparison of RoOCEv2 and full socket networking

e Server configuration - some are not realistic, just what is needed to push S/W to max
9000 MTU, “Big TCP” (~512kB)

ethtool: gro, tso, gro-list, 8kB ring

large socket buffers (32M sendmsg)

hugepages

pinned flows

no netfilter rules

no qdisc

no packet sockets

no iommu (no VMSs), spectre v2 off

Zero copy Rx and Tx (for sockets, emulated via MSG_TRUNC)

O o o o o o o o o o

Networking Performance - Socket Networking

e Max speed 215-220 Gbps for single flow; 397 Gbps for 2 flows
e RXx limited: softirg at 100%, Tx at 60%

) 30.90% [kernel] [k] mlx5e copy skb header

o 5.69% [kernel] [k] mlx5e skb from cge mpwrg nonlinear
o 4.56% [kernel] [k] mlx5e add skb shared info frag
o 3.04% [kernel] [k] napi pp put page

o 2.86% [kernel] [k] mlx5e page release fragmented.isra.0
© 2.75% [kernel] [k] dma sync single for cpu

o) 2.42% [kernel] [k] napi alloc_skb

o 2.21% [kernel] [k] mlx5e build rx skb

o 2.08% [kernel] [k] napi build skb

o 1.95% [kernel] [k] mlx5e handle rx cge mpwrqg

o 1.92% [kernel] [k] page pool put unrefed page

© 1.87% [kernel] [k] skb release data

o 1.83% [kernel] [k] skb gro receive

o 1.67% [kernel] [k] dev gro receive

o 1.54% [kernel] [k] tcp gro receive

o 1.52% [kernel] [k] inet gro receive

o 1.37% [kernel] [k] gro list prepare

o) 1.15% [kernel] [k] dma sync single for device

© 1.02% [kernel] [k] mlx5e post rx mpwges

o 1.01% [kernel] [k] try to wake up

o 1.01% [kernel] [k] page pool alloc pages

© 1.00% [kernel] [k] page pool refill alloc cache

e 400G for a single flow is a big stretch with full-stack socket networking

Networking Performance - RoCEv2

e Same hardware setup
o ib_send bw (IBV_WR_ SEND)
m Relies on buffers to be posted on Rx side (vs RDMA_WRITE)
o Closest comparison to netdev model as possible
o 2MB message size
o 4096 RoCE MTU
o 392 Gbps single flow

How RDMA and RoCEv2 avoids the overhead

e Clear separation between control and data paths
e Pedantic control path configuration, no fallback, everything must be supported by HW

e Data path is fully offloaded
o H/W manages the mechanical task of generating wire packets

e User owns data, no syscalls

e Memory regions vs anonymous buffers
o No kernel side page pool to manage - page pool is overhead

e Zerocopy and in-order payloads
o Payloads are landed in message and byte order directly to user managed MRs
o No need for linearizing and returning pages to a pool

e Not building skb’s per packet (or GRO packet)
e Very strict object lifetimes (verbs objects)

e No reconfiguration of data path

Linux TCP and “devmem”

Recent feature (v6.12 for Rx) to enable use of GPU
memory with TCP
o Tx ZC with GPU memory is a WIP

Uses a page pool with GPU memory via dmabuf and
dedicated Rx queue for flow
o syscalls are needed to recv indication of filled buffers

(recvmsg + cmag)
o syscalls to return buffers to page pool (setsockopt)

Zerocopy into GPU memory, but in an anonymous
memory pool style
o Not direct data placement with in order payloads
o Buffers with packet data need to be linearized (copied
into buffer to be consumed by GPU thread)
o yes, HBM - but still overhead

Good for low 100Gbps range

userspace

@ =

libc

:

kernel

socket API

IP/IPv6

memory
cache

neighbor
cache

page pool

TCP
core

page pool

netdev driver

— P

netdev RSS queues

.

flow Rx queue

H/W

(queues, flow steering
protocol header updates when

slicing)

|

- GPU

Linux TCP and io_uring

Control path - normal socket APls

Data path - socket read, write, etc managed through
lo_uring APls

o User-kernel queues avoid networking syscalls

o io_uring kicks are needed

Rx ZC with cpu memory merged for v6.15
o page_pool for supplying buffers to H/W for flow
o fallback to copy mode

Tx ZC merged for v6.1
Neither ZC support handles GPU memory

Single flow performance in patch set listed as 116G

userspace

control
path

data path

liburing

cal [Ra| [s@

kernel

Y

socket API i

TCP

IP/IPv6

memory
cache

neighbor
cache

netdev
page pOOI

i io_uring

y
page pool

netdev driver

netdev RSS queues

|

| flow Rx queue

H/W

(queues, flow steering
protocol header updates when

slicing)

Linux TCP with QPs

e Proposal for using Linux TCP with QPs

e Control path - normal socket APIs

o Includes configuring Big TCP, hardware offloads (H/W
GRO, TSO) oy

e QP for a TCP based flow [b]
o Flow specific hardware queues Rk i

data path

libibverbs

kernel i

e Data path - socket management handed off to IB oKL AR
driver : 1
o Bypass unnecessary overhead top to bottom

verbs API

IP/TCP

) Rx
core SQ

e Linux TCP | networking

o Congestion control decides when to send payload and
Tx| FEX] |Rx Rx
CQ| |[HQ| [CQ SQ

how much
o Manages ACKs, SACKs, TSN, retries

Linux TCP with QPs - Message Framing

e Need a message framing solution for TCP
o TCP option does not pollute payload bytes

e Message framing requirements:
o Message sequence number
o Needs to include opcode (e.g., SEND with FIRST, MIDDLE, LAST variants)
o Robust solution has each packet self describing its place within the message (i.e., offset in message)
o Need to handle 4B immediate data and icrc too

e Constraint: TCP options limited to 40B
o Always having timestamp option is best practice (12B)

Linux TCP with QPs - TCP option for Messages

e Essential BTH data + timestamp exceeds struct ut8cp_btvl;r{.2
TCP Option Iength o timestamp_presintzl,
. . more segments:1,
o Fold timestamps into BTH rtr:1,
rtr ack:1,
e Hardware can correlate any packet to a rsvd: 2;
cer _u8 opcode; /* RDMA opcode */
message and offset within the message __bel6 msn; /* message seq number */
) __be32 mbo seg; /* 24b message byte offset;
o Knows where to place payload even if packet 8b segment number */

. be32] ;

arrives out-of-order e e

_ _be32 timestamp;

_ _be32 timestamp echo;

union {
__be32 imm data;
/* other extensions */
}i
}:

Final Thoughts

Socket networking
o well established paradigm
o useful for general services and use cases that need scaling to 100k+ sockets per server
o has well known limitations on its performance
o one small part of the “netdev” code base which includes protocols, device models, etc

RDMA and IB stack
o specifically designed for demanding, performance sensitive use cases

RoCEV2 is one form of bringing the 2 together
o UDPI/IP over ethernet

o Reuses netdev model for addresses, routes, neighbor cache, port state
Possible for more - e.g., Linux TCP with RDMA QPs

About building blocks and letting users decide what trade-offs work for them

Final Thoughts

e Future netdevconf workshops
o NCCL, for example, supports sockets and RDMA - side by side examples of performance

o congestion control, spraying (message and packet)
o top-of-mind ideas and discussion points

References

https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/

https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out
-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200

https://www.nextplatform.com/2024/03/13/inside-the-massive-gpu-buildout-at-meta-platforms/

https://www.nextplatform.com/2024/08/23/this-ai-network-has-no-spine-and-thats-a-good-thinag/

https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200
https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200
https://www.nextplatform.com/2024/03/13/inside-the-massive-gpu-buildout-at-meta-platforms/
https://www.nextplatform.com/2024/08/23/this-ai-network-has-no-spine-and-thats-a-good-thing/

Thank You

