
AI Networking - RoCE v2 and netdev
David Ahern, Leon Romanovsky

March 2025

Introduction
● Goal of this workshop

Normalize discussions within netdev community that involve any relevant
networking transport with Linux based APIs

● AI networking is very relevant today

Demands for high throughput and low latency drives a lot of networking research and
discussions

● AI networking primarily driven by RDMA over ethernet - RoCEv2

RoCEv2 is a standards based transport protocol over UDP

Agenda
● Set a foundation for AI networks

● Overview of socket networking vs verbs and RoCEv2

● Why RoCEv2 has become the dominant protocol for AI networks

● Latest advances for socket networking and expectations

● Revisit the proposal for using Linux TCP with QPs

Want this to be interactive. Ask questions as we go. Defer as needed if we hit a time crunch.

AI Training Networks

4

● Large number of hosts and GPUs
○ Meta: 24k GPUs across 3k nodes, 400 Gbps ports

■ targeting upwards of 128k GPUs across 16k hosts

○ xAI: 100k GPUs in a single RDMA fabric, 400Gbps ports
■ Colossus - targeting upwards of a million GPUs

● 100s of billions to now trillions of parameters for models
○ Large data sets moved between nodes and GPUs

● Training time for each round dominated by tail latency

● Specialized, dedicated ethernet networks for training
○ Lossless, rail design

● Focus here is networking within each host in such clusters

Required Characteristics of Host Networking

● Focus is a few large flows running at 100s of Gbps
○ vs millions of flows per host
○ 400Gbps port per GPU → 8 flows running at 400 Gbps

● Get the OS out of the way of the data path
○ At 100+Gbps every cycle matters
○ Every system call, generic feature and hook is just overhead

● Eliminate memory copies

● AI training leverages high performance GPUs and high speed NICs
○ NIC hardware needs to read / write payload directly from / to GPU memory
○ H/W needs to land packet payloads in proper order relative to memory / buffers posted for specific

messages

■ Handling packets that arrive out-of-order is a hardware and transport problem

○ Completions for work requests are in order

Required Characteristics of Host Networking
● Leverage hardware

○ Ethernet protocol headers are simplistic and repetitive - generating wire packets is mechanical process
■ Hardware is really good at repetitive tasks

○ Similar to TSO/GSO - packet headers + large payload
■ Hardware updates protocol headers as needed (e.g., TCP Seq number, checksums, payload lengths)

● Avoid packet drops
○ Retransmits are expensive for flow rates and time to completion
○ Congestion control - slow down Tx side when Rx side gets overwhelmed

netdev and Linux Networking Stack
● net_device representer for ports

○ Hold port state - up / down, carrier, speed, mtu
○ Reference for network addresses, neighbor entries, FIB

entries

● Page pool for Rx packet buffers

● Socket based networking
○ e.g., TCP/UDP L4, IP/IPv6 L3

● System calls in the datapath

● ZC APIs now exist for payloads

● Hooks for a lot of infrastructure
○ packet taps, netfilter, tc, ebpf

IB Verbs Software Vertical Stack
Open-source and community driven
● Kernel:

○ HW modules - configure devices
○ SW modules - simulate RDMA HW
○ IB/core - provides UAPI and internal verbs API
○ ULPs - implement extra functionality on top of verbs

● rdma-core:
○ libibverbs - exposes verbs to userspace
○ librdmacm - connection management API
○ providers - vendor support code for verbs

● Kernel modules and their rdma-core respective
providers needs to be seen as one piece

Basic verbs terminology
● UCTX - user context CQ - Completion Queue
● PD - protection domain RQ - Receive Work Queue
● QP - queue pair SQ - Send Work Queue
● MR - memory region

RDMA Data path
● Completion Queue, Receive Queue, Send Queue

○ H/W queues managed by userspace
○ Work requests submitted via SQ and RQ
○ CQ for notifications when WR is complete

● Message based transfers
○ Each WR in RQ, SQ equals 1 message
○ WR can reference an sg list with many buffers

● Opcodes
○ SEND

■ Rx side posts recv work request - buffers for expected incoming message (or max message size)
■ Tx side posts a send work request; hardware creates wire packets. Very similar to a large TSO packet
■ RC QP and SEND is the closest thing in RDMA world to netdev transaction

○ RDMA_WRITE - no Rx buffer needed; writing to specific address and length

○ RDMA_READ - lesser used opcode
■ Requester knows exact buffers needed for a response
■ Local end posts Rx buffers for a request
■ Sends READ request to pull data from a specific address and length

IB Stack and netdev
● Out-of-band communication messaging

○ Socket based or a second QP

● Connection Manager can be socket based

● gid cache - Addresses on netdev

● Address handles leverage FIB and neighbor
lookups

● IB port state tracks netdev state
○ up / down state
○ RoCE MTU based on netdev MTU

● Data flow offloads are controlled from netdev ops
○ IPsec - transparent for IB stack, rely on netdev

routing

○ MACsec - connected to IB stack through GID
entries, IB stack manages their lifetime, everything
else through netdev

RoCE v2
● Standardized protocol

● RDMA over IP/ethernet networks
○ ethernet + IP/IPv6 + UDP + BTH + operation specific transport headers
○ Well known destination port
○ Source port is random for entropy like other UDP based tunneling protocols
○ QP flow steering based on QPN in BTH

● Basic RDMA ops and headers
○ SEND - only BTH (base transport header)
○ RDMA WRITE - BTH + reth extension header
○ RDMA READ - BTH + reth and aeth extension headers

● Requester - responder - completer model

● Message semantics
○ Multiple packets in a message use FIRST, MIDDLE, LAST modifications to opcode
○ H/W offload for large messages is similar to TSO

● Packets expected to arrive in-order

Networking Performance
● Tests with ConnectX-7 (400G ports)

○ easy, side-by-side comparison of RoCEv2 and full socket networking

● Server configuration - some are not realistic, just what is needed to push S/W to max
○ 9000 MTU, “Big TCP” (~512kB)
○ ethtool: gro, tso, gro-list, 8kB ring
○ large socket buffers (32M sendmsg)
○ hugepages
○ pinned flows
○ no netfilter rules
○ no qdisc
○ no packet sockets
○ no iommu (no VMs), spectre_v2 off
○ Zero copy Rx and Tx (for sockets, emulated via MSG_TRUNC)

Networking Performance - Socket Networking
● Max speed 215-220 Gbps for single flow; 397 Gbps for 2 flows

● Rx limited: softirq at 100%, Tx at 60%
○ 30.90% [kernel] [k] mlx5e_copy_skb_header
○ 5.69% [kernel] [k] mlx5e_skb_from_cqe_mpwrq_nonlinear
○ 4.56% [kernel] [k] mlx5e_add_skb_shared_info_frag
○ 3.04% [kernel] [k] napi_pp_put_page
○ 2.86% [kernel] [k] mlx5e_page_release_fragmented.isra.0
○ 2.75% [kernel] [k] dma_sync_single_for_cpu
○ 2.42% [kernel] [k] __napi_alloc_skb
○ 2.21% [kernel] [k] mlx5e_build_rx_skb
○ 2.08% [kernel] [k] __napi_build_skb
○ 1.95% [kernel] [k] mlx5e_handle_rx_cqe_mpwrq
○ 1.92% [kernel] [k] page_pool_put_unrefed_page
○ 1.87% [kernel] [k] skb_release_data
○ 1.83% [kernel] [k] skb_gro_receive
○ 1.67% [kernel] [k] dev_gro_receive
○ 1.54% [kernel] [k] tcp_gro_receive
○ 1.52% [kernel] [k] inet_gro_receive
○ 1.37% [kernel] [k] gro_list_prepare
○ 1.15% [kernel] [k] dma_sync_single_for_device
○ 1.02% [kernel] [k] mlx5e_post_rx_mpwqes
○ 1.01% [kernel] [k] try_to_wake_up
○ 1.01% [kernel] [k] page_pool_alloc_pages
○ 1.00% [kernel] [k] page_pool_refill_alloc_cache

● 400G for a single flow is a big stretch with full-stack socket networking

Networking Performance - RoCEv2
● Same hardware setup

○ ib_send_bw (IBV_WR_SEND)

■ Relies on buffers to be posted on Rx side (vs RDMA_WRITE)

○ Closest comparison to netdev model as possible
○ 2MB message size
○ 4096 RoCE MTU
○ 392 Gbps single flow

How RDMA and RoCEv2 avoids the overhead
● Clear separation between control and data paths

● Pedantic control path configuration, no fallback, everything must be supported by HW

● Data path is fully offloaded
○ H/W manages the mechanical task of generating wire packets

● User owns data, no syscalls

● Memory regions vs anonymous buffers
○ No kernel side page pool to manage - page pool is overhead

● Zerocopy and in-order payloads
○ Payloads are landed in message and byte order directly to user managed MRs
○ No need for linearizing and returning pages to a pool

● Not building skb’s per packet (or GRO packet)

● Very strict object lifetimes (verbs objects)

● No reconfiguration of data path

Linux TCP and “devmem”
● Recent feature (v6.12 for Rx) to enable use of GPU

memory with TCP
○ Tx ZC with GPU memory is a WIP

● Uses a page pool with GPU memory via dmabuf and
dedicated Rx queue for flow
○ syscalls are needed to recv indication of filled buffers

(recvmsg + cmag)
○ syscalls to return buffers to page pool (setsockopt)

● Zerocopy into GPU memory, but in an anonymous
memory pool style
○ Not direct data placement with in order payloads
○ Buffers with packet data need to be linearized (copied

into buffer to be consumed by GPU thread)
○ yes, HBM - but still overhead

● Good for low 100Gbps range

Linux TCP and io_uring
● Control path - normal socket APIs

● Data path - socket read, write, etc managed through
io_uring APIs
○ User-kernel queues avoid networking syscalls
○ io_uring kicks are needed

● Rx ZC with cpu memory merged for v6.15
○ page_pool for supplying buffers to H/W for flow
○ fallback to copy mode

● Tx ZC merged for v6.1

● Neither ZC support handles GPU memory

● Single flow performance in patch set listed as 116G

Linux TCP with QPs
● Proposal for using Linux TCP with QPs

● Control path - normal socket APIs
○ Includes configuring Big TCP, hardware offloads (H/W

GRO, TSO)

● QP for a TCP based flow
○ Flow specific hardware queues

● Data path - socket management handed off to IB
driver
○ Bypass unnecessary overhead top to bottom

● Linux TCP
○ Congestion control decides when to send payload and

how much
○ Manages ACKs, SACKs, TSN, retries

Linux TCP with QPs - Message Framing
● Need a message framing solution for TCP

○ TCP option does not pollute payload bytes

● Message framing requirements:
○ Message sequence number
○ Needs to include opcode (e.g., SEND with FIRST, MIDDLE, LAST variants)
○ Robust solution has each packet self describing its place within the message (i.e., offset in message)
○ Need to handle 4B immediate data and icrc too

● Constraint: TCP options limited to 40B
○ Always having timestamp option is best practice (12B)

Linux TCP with QPs - TCP option for Messages
● Essential BTH data + timestamp exceeds

TCP option length
○ Fold timestamps into BTH

● Hardware can correlate any packet to a
message and offset within the message
○ Knows where to place payload even if packet

arrives out-of-order

struct tcp_bth {
__u8 ver:2,
 timestamp_present:1,
 more_segments:1,
 rtr:1,
 rtr_ack:1,
 rsvd:2;
__u8 opcode; /* RDMA opcode */
__be16 msn; /* message seq number */
__be32 mbo_seg; /* 24b message byte offset;
 8b segment number */
__be32 icrc;

__be32 timestamp;
__be32 timestamp_echo;

union {
__be32 imm_data;
/* other extensions */

};
};

Final Thoughts
● Socket networking

○ well established paradigm
○ useful for general services and use cases that need scaling to 100k+ sockets per server
○ has well known limitations on its performance
○ one small part of the “netdev” code base which includes protocols, device models, etc

● RDMA and IB stack
○ specifically designed for demanding, performance sensitive use cases

● RoCEv2 is one form of bringing the 2 together
○ UDP/IP over ethernet
○ Reuses netdev model for addresses, routes, neighbor cache, port state

● Possible for more - e.g., Linux TCP with RDMA QPs

● About building blocks and letting users decide what trade-offs work for them

Final Thoughts
● Future netdevconf workshops

○ NCCL, for example, supports sockets and RDMA - side by side examples of performance
○ congestion control, spraying (message and packet)
○ top-of-mind ideas and discussion points

References

https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/

https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out
-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200

https://www.nextplatform.com/2024/03/13/inside-the-massive-gpu-buildout-at-meta-platforms/

https://www.nextplatform.com/2024/08/23/this-ai-network-has-no-spine-and-thats-a-good-thing/

https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200
https://www.tomshardware.com/tech-industry/artificial-intelligence/xai-colossus-supercomputer-with-100k-h100-gpus-comes-online-musk-lays-out-plans-to-double-gpu-count-to-200k-with-50k-h100-and-50k-h200
https://www.nextplatform.com/2024/03/13/inside-the-massive-gpu-buildout-at-meta-platforms/
https://www.nextplatform.com/2024/08/23/this-ai-network-has-no-spine-and-thats-a-good-thing/

Thank You

