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Agenda

The agenda of this topic is to minimize communication across sockets for network

received data.
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Case 1: RSS is distributed across sockets
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e RSS: Receive Side Scalling, Multi Q
NIC
 Interrupts are evenly distributed
netween both sockets.
e Redis-memtier benchmark
o Connected by TOR switch
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TP (MB/s)  39.88 28.03 Amno
P999 (ms) 2.00 2.37 18.5% incr
Ref:

https://github.com/RedisLabs/memtier_benchmark


https://github.com/RedisLabs/memtier_benchmark

Case 2: RSS to local socket
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B  Redis-memtier benchmark

o Connected by TOR switch
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Ref:

https://github.com/RedisLabs/memtier_benchmark


https://github.com/RedisLabs/memtier_benchmark

Problem Statement

minimize

Socket Read System Call < > Network Data Endpoint

For each connection, receive network data on the NIC that is closest in NUMA distance
to the socket's read system call.

While statically defining such a relationship is straightforward, the challenge lies in
achieving it dynamically.

Why socket read system calls?
o Thats where application consumes network data.

Requires connection level steering of traffic.



Linux bond device does not solve the problem.
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 Bond devices are based on MAC addresses rather than connections <ip, port>.
 Need L3 bonding, not L2
o MPTCP provides L3 bonding.

Ref:


https://wiki.linuxfoundation.org/networking/bonding

Multi PCle Socket Network Device

* Multi PCle socket device along with

l .. = .. ' aRFS (flow steering inside the device)

can solve the problem.

PCie Booket il ® B Ut. .
Km i Ft;’:’//‘
Nk *ﬁ“ o Need a different hardware.
‘ - o RFS typically associates the flow with
o a single CPU.

= '| think' combining RSS with RFS for
scalability is not possible.

Ref: https://netdevconf.org/2.2/papers/shochat-devicemgmt-talk.pdf


https://netdevconf.org/2.2/papers/shochat-devicemgmt-talk.pdf

MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
o i.e per{port,ip}socketinterface.

Server A
Socket 1 SUBFLOWS
NIC 1
CPUs <4 Server B
- <Sender>
Socket 2

NIC 2 <&
CPUs



MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
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MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
o e per{port,ip}socketinterface.
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Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.
° struct mptcp_addr_info.numa_affinity;

root@debian:~# 1p mptcp help
Usage: 1ip mptcp endpoint add ADDRESS [ dev NAME 1.[ _4id Tn 1

[ port NR ] [ numa_nodes HEX MASK 1/ [ FLAG-LIST ]
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Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.
o struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
o struct mptcp_subflow_context.numa_affinity;
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Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.

° struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
° struct mptcp_subflow_context.numa_affinity;

3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;
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Implementaion Details

1. Add endpoints with information about the NUMA nodes 4. Notify Kernel Path Manager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
o struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
o struct mptcp_subflow_context.numa_affinity;

3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;
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1. Add endpoints with information lMtpl@mecl%taiQﬂ @@tﬁjrlﬁager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
° struct mptcp_addr_info.numa_affinity; 5. Send ACK message to peer about change in backup flags
2. Subflows inherits the NUMA affinity of the endpoints. o __mptcp_pm_send_ack

o struct mptcp_subflow_context.numa_affinity;
3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;
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Implementaion Details

1. Add endpoints with information about the NUMA nodes 4. Notify Kernel Path Manager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
° struct mptcp_addr_info.numa_affinity; 5. Send ACK message to peer about change in backup flags
2. Subflows inherits the NUMA affinity of the endpoints. o __mptcp_pm_send_ack

o struct mptcp_subflow_context.numa_affinity;
3. Recvmsg thread state is stored inside:

6. Flow selection algorithm
o struct mptcp_sock.numa_state;

o Respects the shortest linger time subflow
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Performance Numbers

* Intel Xeon 128 CPU dual core servers connected via TOR switch.
» Comparison of MPTCP configurations:
o Config 1: all endpoints are configured as "subflow signal"
o Config 2: all endpoints are configured with respective NUMA affinity "subflow signal
numa_affiniity 0x.."

Redis server count Config 1 Config 2 NUMA
8 TP (MB/s) 178 236 32%
P999 (msec) 26 23 11%
16 TP (MB/s) 344 447 29%
P999 (msec) 68 65 4.5%
32 TP (MB/s) 569 745 30%




Against TCP

* |Intel Xeon 128 CPU dual core servers connected via TOR switch.
 Comparison of MPTCP against TCP:
> Mptcp: only one endpoint added with "signal subflow" flags.

o Tcp: default settings of latest kernel

Redis server count Mptcp Tcp
32 TP (MB/s) 547 744 -26%
P999 (msec) 223 216 -3.2%

» What causes such a significant performance gap, even in a single flow scenario within a controlled
lab environment without external traffic?
o Purely mptcp stack overhead?

* Reducing the gap is crucial for all datacenter scenarios.




Fundamental Assumptions

* Single receiver thread per socket:
o Common datacenter applications reads
data within event loop.

* The scheduler rarely assigns the reader
thread to CPUs outside the current socket
zone.

o Otherwise too many ACKs can reduce the
performance.

» Steering the sender network data to the

nearest NUMA NIC can be accomplished
using eBPF hooks, or alternatively, it is part
of our implementation within MPTCP that is
not discussed in the presentation.
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