Il §| ByteDance

Socket Locality Based Flow
Selection in MPTCP

Satish Kumar
System Techonology Engineering (STE)
ByteDance

10th March 2025
NetDev 0x19
satish.kumar@bytedance.com

mailto:satish.kumar@bytedance.com

Agenda

The agenda of this topic is to minimize communication across sockets for network

received data.

Socket 1 CPUs

Interconnej:
PCle

NVME

PCle ‘

NIC 1

Socket 2 CPUs
Application PCle
NVME
PCle
NIC 2

Case 1: RSS is distributed across sockets

Socket 1 CPUs Socket 2 CPUs
Interconnect
SoftIRQ SoftIRQ
IRQ IRQ
IRQ
PCle Mappings

APIC

NIC 1 /

e RSS: Receive Side Scalling, Multi Q
NIC
 Interrupts are evenly distributed
netween both sockets.
e Redis-memtier benchmark
o Connected by TOR switch

Redis Redis
Socket-1 Socket-2
29. (1Y
TP (MB/s) 39.88 28.03 Amno
P999 (ms) 2.00 2.37 18.5% incr
Ref:

https://github.com/RedisLabs/memtier_benchmark

https://github.com/RedisLabs/memtier_benchmark

Case 2: RSS to local socket

SLeIE GUTLGIELE Socket 2 CPUs * RSS: Receive Side Scalling, Multi
Interconnect Q NIC
SoftiRQ e Interrupts are mappeq to the local
socket where the NIC is attached.
B Redis-memtier benchmark

o Connected by TOR switch

IRQ
A Mappings Redis Redis
APIC Socket-1 = Socket-2
NIC 1 / -~ /ana 7\ AR~ A A «-—nn/.| 7
| P999 (ms) 2.00 2.52 26 % incr
Ref:

https://github.com/RedisLabs/memtier_benchmark

https://github.com/RedisLabs/memtier_benchmark

Problem Statement

minimize

Socket Read System Call < > Network Data Endpoint

For each connection, receive network data on the NIC that is closest in NUMA distance
to the socket's read system call.

While statically defining such a relationship is straightforward, the challenge lies in
achieving it dynamically.

Why socket read system calls?
o Thats where application consumes network data.

Requires connection level steering of traffic.

Linux bond device does not solve the problem.

Bond Device
T
' eth0 1 port
| | t Host B
I : port
Host A : | Switch 3
|
|
: : Host C
I eth 1 : port port
') 2 4

 Bond devices are based on MAC addresses rather than connections <ip, port>.
 Need L3 bonding, not L2
o MPTCP provides L3 bonding.

Ref:

https://wiki.linuxfoundation.org/networking/bonding

Multi PCle Socket Network Device

* Multi PCle socket device along with

l .. = .. ' aRFS (flow steering inside the device)

can solve the problem.

PCie Booket il ® B Ut. .
Km i Ft;’:’//‘
Nk *ﬁ“ o Need a different hardware.
‘ - o RFS typically associates the flow with
o a single CPU.

= '| think' combining RSS with RFS for
scalability is not possible.

Ref: https://netdevconf.org/2.2/papers/shochat-devicemgmt-talk.pdf

https://netdevconf.org/2.2/papers/shochat-devicemgmt-talk.pdf

MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
o i.e per{port,ip}socketinterface.

Server A
Socket 1 SUBFLOWS
NIC 1
CPUs <4 Server B
- <Sender>
Socket 2

NIC 2 <&
CPUs

MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
o e per{port,ip}socketinterface.

Server A
Socket 1
Receiver NIC1 - SUBFLOWS Server B
CPUs
.................... ” <Sender>
Socket2 et

CPUs

MPTCP Subflows

 MPTCP can create multiple subflows per connection / socket.
o e per{port,ip}socketinterface.

Server A

Socket 1 SUBFLOWS
CPUs

Socket 2
Receiver | NIC2 <

Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.
° struct mptcp_addr_info.numa_affinity;

root@debian:~# 1p mptcp help
Usage: 1ip mptcp endpoint add ADDRESS [dev NAME 1.[_4id Tn 1

[port NR] [numa_nodes HEX MASK 1/ [FLAG-LIST]

Server A

Ox1

Socket 1

NIC 1
CPUs

0x2
Socket 2

NIC 2

CPUs

Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.
o struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
o struct mptcp_subflow_context.numa_affinity;

Server A
Socket 1 o ox1
CPUs Nic1 Server B
SUBFLOWS —
0x2
Socket 2 NIC 2| 4

CPUs 0x2

Implementaion Details

1. Add endpoints with information about the NUMA nodes to which they are locally attached.

° struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
° struct mptcp_subflow_context.numa_affinity;

3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;

Server A

OX]. Oxl
Socket 1 . Ox1
Receiver | NIC1 - Server B
CPUs

SUBFLOWS —

0x2

Socket 2
OCKE NIC2 4
CPUs 0x2

Implementaion Details

1. Add endpoints with information about the NUMA nodes 4. Notify Kernel Path Manager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
o struct mptcp_addr_info.numa_affinity;

2. Subflows inherits the NUMA affinity of the endpoints.
o struct mptcp_subflow_context.numa_affinity;

3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;

Server A
Ox1
Socket 1 0x1
NIC 1
CPUs <= Server B
SUBFLOWS —
0x2 0x2
Socket 2
i NIC 2 <&
CPUs <Re?elver> 0x2
\ Kernel

PM

1. Add endpoints with information lMtpl@mecl%taiQﬂ @@tﬁjrlﬁager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
° struct mptcp_addr_info.numa_affinity; 5. Send ACK message to peer about change in backup flags
2. Subflows inherits the NUMA affinity of the endpoints. o __mptcp_pm_send_ack

o struct mptcp_subflow_context.numa_affinity;
3. Recvmsg thread state is stored inside:
o struct mptcp_sock.numa_state;

Server A
Ox1
Socket 1 NICT < 0x1 o .
CPUs erver
SUBFLOWS — Kernel
0x2 0x2 PM
Socket 2
i NIC 2 <&
CPUs <Re?elver> 0x2
\ Kernel ACK

PM

Implementaion Details

1. Add endpoints with information about the NUMA nodes 4. Notify Kernel Path Manager

to which they are locally attached. o mptcp_schedule_work(MPTCP_PM_SUBFLOW_NUMA_AFFINITY)
° struct mptcp_addr_info.numa_affinity; 5. Send ACK message to peer about change in backup flags
2. Subflows inherits the NUMA affinity of the endpoints. o __mptcp_pm_send_ack

o struct mptcp_subflow_context.numa_affinity;
3. Recvmsg thread state is stored inside:

6. Flow selection algorithm
o struct mptcp_sock.numa_state;

o Respects the shortest linger time subflow

Server A
o When subflows are not separable
ox1 m Select subflow with socket locality to receiver
Socket 1 NICT «-..... 0x1 S
cPus e e
SUBELOWS [TTtrree B ey
0x2 0x2 PM

Socket 2
i NIC2 &

Performance Numbers

* Intel Xeon 128 CPU dual core servers connected via TOR switch.
» Comparison of MPTCP configurations:
o Config 1: all endpoints are configured as "subflow signal"
o Config 2: all endpoints are configured with respective NUMA affinity "subflow signal
numa_affiniity 0x.."

Redis server count Config 1 Config 2 NUMA
8 TP (MB/s) 178 236 32%
P999 (msec) 26 23 11%
16 TP (MB/s) 344 447 29%
P999 (msec) 68 65 4.5%
32 TP (MB/s) 569 745 30%

Against TCP

* |Intel Xeon 128 CPU dual core servers connected via TOR switch.
 Comparison of MPTCP against TCP:
> Mptcp: only one endpoint added with "signal subflow" flags.

o Tcp: default settings of latest kernel

Redis server count Mptcp Tcp
32 TP (MB/s) 547 744 -26%
P999 (msec) 223 216 -3.2%

» What causes such a significant performance gap, even in a single flow scenario within a controlled
lab environment without external traffic?
o Purely mptcp stack overhead?

* Reducing the gap is crucial for all datacenter scenarios.

Fundamental Assumptions

* Single receiver thread per socket:
o Common datacenter applications reads
data within event loop.

* The scheduler rarely assigns the reader
thread to CPUs outside the current socket
zone.

o Otherwise too many ACKs can reduce the
performance.

» Steering the sender network data to the

nearest NUMA NIC can be accomplished
using eBPF hooks, or alternatively, it is part
of our implementation within MPTCP that is
not discussed in the presentation.

ACKs

ACKs

1000
900
800
700
600
500
400
300
200
100

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

32 Redis Servers

Seconds

64 Redis Servers

bl

Seconds

