< NVIDIA.

Challenges of time sync in
Datacenters

Maciek Machnikowski (NVIDIA)

Oleg Obleukhov (Meta)
Vadim Fedorenko (Meta)
Wojciech Wasko (NVIDIA)

Agenda

PTP in datacenters
Multi-NIC setups
Client-server |[EEE 1588
Window of uncertainty

PTP clocks and the userland

NVIDIA.

Time is the fourth dimension of the data center

> uniformizes distributed environments i
> profiling

> high-frequency telemetry 3 —»\Mumm!m

> accelerates workloads
> distributed databases (Google Spanner)

> k-v stores (Cassandra)

> connects the compute to the physical world
> Telco - 5G/6G virtual base station

> Far edge - streaming data to/from sensors

> Automotive - MIMO radars sphere uses timesync to display coherent imaging.

. o
> ProViz - massive video walls Behind the curtains, it's a small datacenter.

Photo: Michael Bittle via Sphere Facebook.

the better the accuracy,
the more usecases are unlocked.

<A NVIDIA.

https://www.instagram.com/michaelbittle/?hl=en
https://www.facebook.com/photo.php?fbid=313036014998543&set=pb.100088764407477.-2207520000&type=3

PTP in datacenters

Significantly larger scale
tens to hundreds of thousands of nodes

More unpredictable failures
Custom software stacks and distributions
Heterogeneous environments

Synchronized servers coexist with unsynchronized

NVIDIA.

Event tracing in Al clusters

Tracing job start

* Unknown sources of job duration discrepancies

* Network?
» GPU?
* Clocks?

» Wasting the compute power of the "fastest”
hosts.

* NTP lacks accuracy

tl

12

13

t4

Host 1

Host 3

OO Meta <AnviDIA I

2()

20

Distribution of job start time of NTP —synchronized tasks

Start Time (us)

O\ Meta

NVIDIA.

Distribution of job start time of PTP —synchronized tasks

Start Time (us)

O\ Meta NVIDIA.

Mmicroseconds

30

600 1
400 = 25 =
200 == |
= ;o 20
— 2
o = :
= 3 15
—200 == <
S — O |
| =
—400 - 10
—600
5
0 20 40 60 80
0 100 200 300 400 Count
Count
Distribution of latency measurements using NTP time Distribution of latency measurements using PTP time

OO Meta <AnvIDIA I

Multiple NIC challenges

NIC Challenges

Datacenter endpoints might feature several NICs.

Alternatively, a single NIC could accommodate multiple hosts or clients.

NVIDIA.

Multi-NIC setups

A host must agree on the best time source.

Current solutions do not fulfill the requirements

Chrony can read and monitor multiple PHCs,

but it does not connect with the PTP stack to determine its state and quality

NVIDIA.

Single NIC may serve multiple hosts

A single NIC may serve multiple:

Containers
VMs
Or even Hosts

Only one entity can steer the clock

But all need information about the sync state

NVIDIA.

Client-server 1588

PTP Unicast messaging

Server
Client
/
Server ANNOUNCE t,
/
/
Announce Grant Request /
ANNOUNCE
/
o Sync Gr nt Request \
Grant & T e R — | ¢
Sync elay €quest 4
/ /
onse
de\a\]Resp
elayReq est
fant Request | —
/
L
Gra
uest
DelayRed
/

<A NVIDIA. I

Client-server IEEE 1588

Eliminates the need for
unicast negotiation
maintaining the per-client state

Reduce network bandwidth

Server responds to each request

NVIDIA.

Client-server IEEE 1588

At least three projects implement this idea

(currently in Chrony)

NVIDIA.

https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://github.com/meinberg-sync/flashptpd
https://datatracker.ietf.org/doc/draft-ietf-ntp-over-ptp/04/

SPTP

* Client sends a Delay Request Client St
* Server responds with a Sync

* Server sends FollowUp and Announce

QD
13 +-§-
Delay Request
T4
Sync
T1
Announce/Followup

12

<A NVIDIA. I

Window of uncertainty

Window of uncertainty

Applications must know not only the time
But also the associated uncertainty of it
Earliest-latest

Kernel timex:

Maxerror
Esterror

NVIDIA.

Different error sources

Class of a GM
And its error

Local oscillator drift
And holdover

clock read delays
Clock resolution
Accumulated path elements delays

Link asymmetry

NVIDIA.

Window of uncertainty

Synchronous workload task start relative time offsets

ntpd-synchronized cluster

e01-dgx1-086 J
e01-dgx1-085 -
d08-dgx1-081 -
d08-dgx1-080 -
d08-dgx1-079 -
d08-dgx1-078 A
d08-dgx1-077 -

dO0/7-dgx1-075 -

—6000

—4000 —2000 0

UsS

0

2000 4000 6000 8000

<ANVIDIA. I

PTP Hardware Clocks
and friends userspace

Access permissions

no permissions checks for POSIX dynamic clocks ioctls

-> only root granted any access

even read-only apps had to have write permissions

fixed in net-next

NVIDIA.

How userland tells the time

TSC (x86), CNTPCT ELO (arm), ... < 10 nsec

arch-dependent CPU cycle counter
free-running; starts at O on boot

system clock (vDSO)

| o < 30 nsec
kernel exports page with GTOD (Generic Time Of Day) data
userspace reconstructs clock (REALTIME, MONOTONIC, ...) with GTOD data and CPU counter
system clock (syscall) < 200 nsec
userspace calls kernel
kernel calculates and returns value (similar math to vDSO)
device clock (syscall) < 30’000 nsec

userspace calls kernel
device driver retrieves time from device

NVIDIA.

Let’s improve that

vDSO for dynamic clocks read clock without PCle access
(eliminating syscall) (?7)
» can save ~100-200 nsec * can save 10s of microseconds
» much work * 2?7 work
* smol reward * much reward

<ANVIDIA. I

Proof of Concept

Hermoor

calculate correlation

< fast, async communication >

Hermod daemon
‘e - CPU/device clock drift estimation
- CPU/device cross-timestamp

libhermod.so

- extrapolates device clock —
using CPU clock

shared
memory

<A NVIDIA. I

How much faster?

/dev/ptpX (syscall + PCIe) approx. /dev/ptpX
Diff between consecutive clock readings (ns): Diff between consecutive clock readings (ns):
PO .0 1432 PO .01 36
pO1: 1466 pO1: 36
Avg: 5334 Avg: 59
P99 4252 P99 61
p99. 403882 P99.9 174
kernel 6.13
load:

 Sxiperf3 bidir (external loopback between ports)
e stress-ng cpu (32) iomix (32) pci (32) vm (32) fork (32)

HW: HPE DL380 Gen1l1l + Intel Xeon Gold 6426Y + NVIDIA ConnectX-7 2x200G SANVIDIA I

How do we verify the quality?

Precise Downstream Port
Time | | . ,..
Measurement B3 L 3 B3
3. ¢ PR B S 5:
/S
OMPIM b 3“*PTM ,.,. \

PCle link-local Message protocol \\ Dialog .~ N Dlalog o -
. . PIM PTM ™, PTM \
timestamped in HW Response ResponseD ResponseD

. (t2" 13 - 12) ; (213 -12) |

1 \\ /\ PIM /
PTM ™. Request '\ Request /) Request)/
an atomic cross-timestamp of CPU and Dialog]/]/ Y /)\
i YA [/
PCItia?sea\::veerglncz)cl:i:c;z: :Ete{:osod enough for our k + o + * " + +
' t1 t4 t1 t4 t1 t4

purposes

Upstream Port

this gives us ground truth

NVIDIA.

Verification via PCle PTM

repeat

hermod

PoC

get cross-timestamp

calculate
sys/dev
correlation

get cross-timestamp

S
S O
get device clock approximation
corresponding to S,

>
DESt
4_ ____________________________

hermod

PoC

this can be forced to
not use PCle PTM,
emulating an older system

<ANVIDIA. I

Approximation error histogram

0.08 - _
Without PCle PTM
I (but with some heuristics)
95-th percentiles: -199, 185 [ns]
0.07 - o With PCle PTM
95-th percentiles: -10, 9 [ns]
0.006 -

O
=)
un
|
|

0.03 -

Normalized Frequency
-
o
i
I

0.02 -

0.01 -

0.00 1 ' ' '
—250 —200 ~150 ~100 ~50 0 50

Error in approximation [ns]

kernel 6.13. Load: 5x iperf3 bidir (external loopback between ports) + stress-ng cpu (32) iomix (32) pci (32) vm (32) fork (32)
HW: HPE DL380 Gen1l1l + Intel Xeon Gold 6426Y + NVIDIA ConnectX-7 2x200G

100 150

200

250

<ANVIDIA. I

Wrapping up...

What’s next

should the PHC approximation functionality be provided by the kernel?

an “approximation driver”

aliases existing PHC, provides approximated value in clock gettime()

now that apps rely on clocks more and more, how do they know what’s happening to the clock?

not only window of uncertainty
did someone change the clock while | wasn’t watching?

NETLINK messages for clock modification events

API| for time uncertainty

Use adjtimex esterror presented on

NVIDIA.

https://netdevconf.info/0x18/sessions/workshop/driver-and-hw-apis-workshop.html

< NVIDIA.

	Default Section
	Slide 1: Challenges of time sync in Datacenters
	Slide 2: Agenda

	Intro
	Slide 3: Time is the fourth dimension of the data center
	Slide 4: PTP in datacenters
	Slide 5
	Slide 6: Tracing job start
	Slide 7: Distribution of job start time of NTP –synchronized tasks
	Slide 8: Distribution of job start time of PTP –synchronized tasks
	Slide 9

	Multi-NIC
	Slide 11
	Slide 12: NIC Challenges
	Slide 13: Multi-NIC setups
	Slide 14: Single NIC may serve multiple hosts

	Client-server IEEE 1588
	Slide 15
	Slide 16: PTP Unicast messaging
	Slide 17: Client-server IEEE 1588
	Slide 18: Client-server IEEE 1588
	Slide 20: SPTP

	Window of uncertainty
	Slide 22
	Slide 23: Window of uncertainty
	Slide 24: Different error sources
	Slide 25: Window of uncertainty

	PTP and userland
	Slide 26
	Slide 27: Access permissions
	Slide 28: How userland tells the time
	Slide 29: Let’s improve that
	Slide 30: Proof of Concept
	Slide 31: How much faster?
	Slide 32: How do we verify the quality?
	Slide 33: Verification via PCIe PTM
	Slide 34: Approximation error histogram
	Slide 35
	Slide 36: What’s next
	Slide 37

