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Time is the fourth dimension of the data center

> uniformizes distributed environments i
> profiling

> high-frequency telemetry 3 —»\Mumm!m

> accelerates workloads
> distributed databases (Google Spanner)

> k-v stores (Cassandra)

> connects the compute to the physical world
> Telco - 5G/6G virtual base station

> Far edge - streaming data to/from sensors

> Automotive - MIMO radars sphere uses timesync to display coherent imaging.

. o
> ProViz - massive video walls Behind the curtains, it's a small datacenter.

Photo: Michael Bittle via Sphere Facebook.

the better the accuracy,
the more usecases are unlocked.
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https://www.instagram.com/michaelbittle/?hl=en
https://www.facebook.com/photo.php?fbid=313036014998543&set=pb.100088764407477.-2207520000&type=3

PTP in datacenters

Significantly larger scale
tens to hundreds of thousands of nodes

More unpredictable failures
Custom software stacks and distributions
Heterogeneous environments

Synchronized servers coexist with unsynchronized
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Event tracing in Al clusters



Tracing job start

* Unknown sources of job duration discrepancies

* Network?
» GPU?
* Clocks?

» Wasting the compute power of the "fastest”
hosts.

* NTP lacks accuracy
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Distribution of job start time of NTP —synchronized tasks
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Distribution of job start time of PTP —synchronized tasks

Start Time (us)
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Multiple NIC challenges




NIC Challenges

Datacenter endpoints might feature several NICs.

Alternatively, a single NIC could accommodate multiple hosts or clients.
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Multi-NIC setups

A host must agree on the best time source.

Current solutions do not fulfill the requirements

Chrony can read and monitor multiple PHCs,

but it does not connect with the PTP stack to determine its state and quality
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Single NIC may serve multiple hosts

A single NIC may serve multiple:

Containers
VMs
Or even Hosts

Only one entity can steer the clock

But all need information about the sync state
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Client-server 1588




PTP Unicast messaging
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Client-server IEEE 1588

Eliminates the need for
unicast negotiation
maintaining the per-client state

Reduce network bandwidth

Server responds to each request
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Client-server IEEE 1588

At least three projects implement this idea

(currently in Chrony)

NVIDIA.


https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://github.com/meinberg-sync/flashptpd
https://datatracker.ietf.org/doc/draft-ietf-ntp-over-ptp/04/

SPTP

* Client sends a Delay Request Client St
* Server responds with a Sync

* Server sends FollowUp and Announce

QD
13 +-§-
Delay Request
T4
Sync
T1
Announce/Followup
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Window of uncertainty




Window of uncertainty

Applications must know not only the time
But also the associated uncertainty of it
Earliest-latest

Kernel timex:

Maxerror
Esterror

NVIDIA.



Different error sources

Class of a GM
And its error

Local oscillator drift
And holdover

clock read delays
Clock resolution
Accumulated path elements delays

Link asymmetry
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Window of uncertainty

Synchronous workload task start relative time offsets

ntpd-synchronized cluster
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PTP Hardware Clocks
and friends userspace




Access permissions

no permissions checks for POSIX dynamic clocks ioctls

-> only root granted any access

even read-only apps had to have write permissions

fixed in net-next
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How userland tells the time

TSC (x86), CNTPCT ELO (arm), ... < 10 nsec

arch-dependent CPU cycle counter
free-running; starts at O on boot

system clock (vDSO)

| o < 30 nsec
kernel exports page with GTOD (Generic Time Of Day) data
userspace reconstructs clock ( REALTIME, MONOTONIC, ...) with GTOD data and CPU counter
system clock (syscall) < 200 nsec
userspace calls kernel
kernel calculates and returns value (similar math to vDSO)
device clock (syscall) < 30’000 nsec

userspace calls kernel
device driver retrieves time from device
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Let’s improve that

vDSO for dynamic clocks read clock without PCle access
(eliminating syscall) (?7)
» can save ~100-200 nsec * can save 10s of microseconds
» much work * 2?7 work
* smol reward * much reward
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Proof of Concept

Hermoor

calculate correlation

< fast, async communication >

Hermod daemon
‘e - CPU/device clock drift estimation
- CPU/device cross-timestamp

libhermod.so

- extrapolates device clock —
using CPU clock

shared
memory
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How much faster?

/dev/ptpX (syscall + PCIe) approx. /dev/ptpX
Diff between consecutive clock readings (ns): Diff between consecutive clock readings (ns):
PO .0 1432 PO .01 36
pO1: 1466 pO1: 36
Avg: 5334 Avg: 59
P99 4252 P99 61
p99. 403882 P99.9 174
kernel 6.13
load:

 Sxiperf3 bidir (external loopback between ports)
e stress-ng cpu (32) iomix (32) pci (32) vm (32) fork (32)

HW: HPE DL380 Gen1l1l + Intel Xeon Gold 6426Y + NVIDIA ConnectX-7 2x200G SANVIDIA I



How do we verify the quality?

Precise Downstream Port
Time | | . ,..
Measurement B3 L 3 B3
3. ¢ PR B S 5:
/S
OMPIM b 3“*PTM ,.,. \

PCle link-local Message protocol \\ Dialog .~ N Dlalog o -
. . PIM PTM ™, PTM \
timestamped in HW Response ResponseD ResponseD

. (t2" 13 - 12) ; (213 -12) |

1 \\ /\ PIM /
PTM ™. Request '\ Request / ) Request )/
an atomic cross-timestamp of CPU and Dialog ]/ ]/ Y / )\
i YA [/
PCItia?sea\::veerglncz)cl:i:c;z: :Ete{:osod enough for our k + o + * " + +
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purposes

Upstream Port

this gives us ground truth
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Verification via PCle PTM

repeat

hermod

PoC

get cross-timestamp

calculate
sys/dev
correlation

get cross-timestamp

S
S O
get device clock approximation
corresponding to S,

>
DESt
4_ ____________________________

hermod

PoC

this can be forced to
not use PCle PTM,
emulating an older system
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Approximation error histogram
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Without PCle PTM
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Wrapping up...




What’s next

should the PHC approximation functionality be provided by the kernel?

an “approximation driver”

aliases existing PHC, provides approximated value in clock gettime()

now that apps rely on clocks more and more, how do they know what’s happening to the clock?

not only window of uncertainty
did someone change the clock while | wasn’t watching?

NETLINK messages for clock modification events

API| for time uncertainty

Use adjtimex esterror presented on

NVIDIA.


https://netdevconf.info/0x18/sessions/workshop/driver-and-hw-apis-workshop.html
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