e‘ Red Hat
Enterprise Linux

Kernel Protocol Verifier

Using the kernel verifier to verify protocol
behaviours using namespaces

Alexander Aring

Term “Verification” in this talk

e Are we building the software right?
e Does it meet the expected requirements?

e If violated provide debugging information
[_

Red Hat

What | do verify?

- xample: Distributed Lock Manager (DLM)
Requirement: Control Mutual Access
Networking Protocol

ock-Context per node (network-entity)
We verify a DLM as a

Red Hat

Distributed Locking Requirements

lock(A) SR

" critical
critical section
section

unlock(A)
unlock(A)

Red Hat

DLM Violation Example

Two Nodes access
critical section at
the same timel!

lock(A) lock(A)
" critical
critical cection

section

Red Hat

DLM Requirement

DLM requirement s
If violated, DLM is broken

Red Hat

DLM Users View

e Userssystem
requirements
view

e Userssee DILLM

internals as a
Blackbox

. //init DLM

. lock(A);

. do_critical_section();
. unlock(A);

. //do whatever more

Use standard
locking API

No networking
awareness

DLM protocol
handled internally
Protocol reflects
above User view

Red Hat

DLM Verification by Users View

We verify the DLM protocol
from the |

Red Hat

Trace DLM user API

Application tstamp Trace Monitor

. //init DLM : acquired(A)

. Llock(A); P Lock holder

. do_critical_section();

. unlock(A); - information

. //do whatever more : releases(A)

Red Hat

Net-Namespace Environment

ns_init?

nsO

lock(A) |B==

critical
section

unlock(A)

Global monitor
lock holder
information

observe

ns2

lock(A)
critical
section

unlock(A)

Red Hat

Net-Namespace Environment

ns_init?

Monitor detects
User
Requirement
violation

nsO
lock(A) /

critical
section

Global monitor
lock holder
information

observe

ns2
lock(A)

Red Hat

The Monitor-Instance

Kernel-Verifier “kernel/trace/rv/(monitors)”

By

Attach/Detach Linux tracepoints

Ordered APl record as they appear -> causality
Generated C code by compiler

Verity to be inside model during runtime
Context-Bases, e.g. per-CPU, per-Task or Global.

Red Hat

Monitor Automaton (Existing WIP)

wakeup in preemptive (WIP) - per CPU - dot file

preemptive
digraph state_automaton {
{node [shape = circle] "non_preemptive"};
{node [shape = plaintext, style=invis, label=""]
{node [shape = doublecircle] "preemptive"};
{node [shape = circle] "preemptive"};
"__inilt_preemptive" -> "preemptive";
"non_preemptive" [label = "non_preemptive"];
"non_preemptive" -> "non_preemptive" [label = "sched_waking"];

__1init_preemptive"};

"non_preemptive" -> "preemptive" [label = "preempt_enable"];
"preemptive" [label = "preemptive"];

"preemptive" -> "non_preemptive" [label = "preempt_disable"];
{ rank = min ;

non_preemptive

__init_preemptive";
"preemptive”;

preempt_disable |preempt_enable

sched waking

Red Hat

DOT Automaton

‘dot2c.py” compiler

Edges are tracepoints

Can be enabled with tracefs

Any workload to verity behaviour
What happens if violated?

Red Hat

Reactors - What happens on Violation?

e Different reactors can be implemented
o panic() - kdump, reboot
o printk() - kernel log
o Whatever you want?
e Information to debug violated kernel state
and how we got there?

Red Hat

Adapting to DLM case

Monitor is on per Lock context

| ock context is above netns
DLM is in reality more complex

f unlock don't track holders and
free resources

Violation: non-compatible move
Into INVALID state

N
—b-,'ﬂ valid Dwith_others_compatible

Red Hat

DLM Tracepoint Attachments

rv_attach_trace_probe('dlm", dlm_acquire, handle_dlm_acquire);
rv_attach_trace_probe("dlm", dlm_release, handle_dlm_release);

'_\

//above netns global hash
static struct rhashtable rv_dlm_hash;

N

void handle_dlm_acquired(int *data, struct net *net, u32 id);
{
- struct rv_dlm_lock_ctx {§
//per monitor ctx
union rv_dlm_lock_monitor rv;
//9lobal lock identifier
u32 lock_1id;
//1is already acquired?
bool is_acquired;
//from which ns holds lock?
const struct *net;

//lookup or create lock
1k = lookup_or_create_lock(net, id);
if (lk_compatible_with_others(lk)) {
//generated C automaton code -> meet requ .. Thmmbs
da_handle_event_dlm(..., with_others_compatible_dlm);
? else §
//violates requirement -> reactor hits!
da_handle_event_dlm(..., event_max_dlm);

1.
2.
3.
4.
5.
6.
7.
8.
9.

GORNONREBESOSWOWONOU DM

3

//remove holder on handle_dlm_release() if no holder do kfree()

“
~.

Red Hat

RFC Patch Series

https./lore.kernel.org/afs2/2024082/1
80236.316946-8-aahringo@redhat.com/

*DLM is in the reality more complex as shown, 5 different lock modes
*most interesting part after lock states after recovery

Red Hat

https://lore.kernel.org/gfs2/20240827180236.316946-8-aahringo@redhat.com/
https://lore.kernel.org/gfs2/20240827180236.316946-8-aahringo@redhat.com/

Future Work |

e Net-Namespace based monitor?

o Currently netns handling in my global monitor

o Easier to implement netns based monitor
e Netnsrelated Reactors?

o printk - able to separate netns (or ns general)?

o Combine with network traffic e.g. tshark analyzer?
e User space Tracing as Kernel-Verifier user?

Red Hat

Future work |l

e Without Net-Namespace?
o Real network environment
o Time synchronized tracing
e Networkify Tracing Ox18 - Still TODO

o Using PTP, keeping causality?

Red Hat

Thank you

