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Term “Verification” in this talk

e Are we building the software right?
e Does it meet the expected requirements?

e If violated provide debugging information
[ _
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What | do verify?

- xample: Distributed Lock Manager (DLM)
Requirement: Control Mutual Access
Networking Protocol

ock-Context per node (network-entity)
We verify a DLM as a
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Distributed Locking Requirements

lock(A) SR

" critical
critical section
section

unlock(A)
unlock(A)
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DLM Violation Example

Two Nodes access
critical section at
the same timel!

lock(A) lock(A)
" critical
critical cection

section
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DLM Requirement

DLM requirement s
If violated, DLM is broken
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DLM Users View

e Userssystem
requirements
view

e Userssee DILLM

internals as a
Blackbox

. //init DLM

. lock(A);

. do_critical_section();
. unlock(A);

. //do whatever more

Use standard
locking API

No networking
awareness

DLM protocol
handled internally
Protocol reflects
above User view
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DLM Verification by Users View

We verify the DLM protocol
from the |
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Trace DLM user API

Application tstamp Trace Monitor

. //init DLM : acquired(A)

. Llock(A); P Lock holder

. do_critical_section();

. unlock(A); - information

. //do whatever more : releases(A)
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Net-Namespace Environment

ns_init?

nsO

lock(A) |B==

critical
section

unlock(A)

Global monitor
lock holder
information

observe

ns2

lock(A)
critical
section

unlock(A)
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Net-Namespace Environment

ns_init?

Monitor detects
User
Requirement
violation

nsO
lock(A) /

critical
section

Global monitor
lock holder
information

observe

ns2
lock(A)
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The Monitor-Instance

Kernel-Verifier “kernel/trace/rv/(monitors)”

By

Attach/Detach Linux tracepoints

Ordered APl record as they appear -> causality
Generated C code by compiler

Verity to be inside model during runtime
Context-Bases, e.g. per-CPU, per-Task or Global.
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Monitor Automaton (Existing WIP)

wakeup in preemptive (WIP) - per CPU - dot file

preemptive
digraph state_automaton {
{node [shape = circle] "non_preemptive"};
{node [shape = plaintext, style=invis, label=""]
{node [shape = doublecircle] "preemptive"};
{node [shape = circle] "preemptive"};
"__inilt_preemptive" -> "preemptive";
"non_preemptive" [label = "non_preemptive"];
"non_preemptive" -> "non_preemptive" [ label = "sched_waking" ];

__1init_preemptive"};

"non_preemptive" -> "preemptive" [ label = "preempt_enable" ];
"preemptive" [label = "preemptive"];

"preemptive" -> "non_preemptive" [ label = "preempt_disable" ];
{ rank = min ;

non_preemptive

__init_preemptive";
"preemptive”;

preempt_disable |preempt_enable

sched waking
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DOT Automaton

‘dot2c.py” compiler

Edges are tracepoints

Can be enabled with tracefs

Any workload to verity behaviour
What happens if violated?
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Reactors - What happens on Violation?

e Different reactors can be implemented
o panic() - kdump, reboot
o printk() - kernel log
o Whatever you want?
e Information to debug violated kernel state
and how we got there?
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Adapting to DLM case

Monitor is on per Lock context

| ock context is above netns
DLM is in reality more complex

f unlock don't track holders and
free resources

Violation: non-compatible move
Into INVALID state

N
—b-,'ﬂ valid Dwith_others_compatible
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DLM Tracepoint Attachments

rv_attach_trace_probe('dlm", dlm_acquire, handle_dlm_acquire);
rv_attach_trace_probe("dlm", dlm_release, handle_dlm_release);

'_\

//above netns global hash
static struct rhashtable rv_dlm_hash;

N

void handle_dlm_acquired(int *data, struct net *net, u32 id);
{
- struct rv_dlm_lock_ctx {§
//per monitor ctx
union rv_dlm_lock_monitor rv;
//9lobal lock identifier
u32 lock_1id;
//1is already acquired?
bool is_acquired;
//from which ns holds lock?
const struct *net;

//lookup or create lock
1k = lookup_or_create_lock(net, id);
if (lk_compatible_with_others(lk)) {
//generated C automaton code -> meet requ .. Thmmbs
da_handle_event_dlm(..., with_others_compatible_dlm);
? else §
//violates requirement -> reactor hits!
da_handle_event_dlm(..., event_max_dlm);

1.
2.
3.
4.
5.
6.
7.
8.
9.

GORNONREBESOSWOWONOU DM

3

//remove holder on handle_dlm_release() if no holder do kfree()

“
~.
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RFC Patch Series

https./lore.kernel.org/afs2/2024082/1
80236.316946-8-aahringo@redhat.com/

*DLM is in the reality more complex as shown, 5 different lock modes
*most interesting part after lock states after recovery
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https://lore.kernel.org/gfs2/20240827180236.316946-8-aahringo@redhat.com/
https://lore.kernel.org/gfs2/20240827180236.316946-8-aahringo@redhat.com/

Future Work |

e Net-Namespace based monitor?

o Currently netns handling in my global monitor

o Easier to implement netns based monitor
e Netnsrelated Reactors?

o printk - able to separate netns (or ns general)?

o Combine with network traffic e.g. tshark analyzer?
e User space Tracing as Kernel-Verifier user?
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Future work |l

e Without Net-Namespace?
o Real network environment
o Time synchronized tracing
e Networkify Tracing Ox18 - Still TODO

o Using PTP, keeping causality?
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Thank you



