
Bridge filtering with nftables

Florian Westphal
Red Hat

fw@strlen.de

Abstract

The current Linux bridge/ebtables architecture has several
shortcomings. Nftables, a framework to replace and unify
the various address family specific packet filtering tools in the
Linux kernel offers an opportunity to provide a more flexible
approach to handling bridge filtering needs. After a brief sum-
mary of the ebtables and bridge filtering issues, this paper will
show some of the advantages that nft bridge offers over ebta-
bles and present two features that are currently being worked
on in detail: stateful packet filtering and nfqueue (queue pack-
ets to userspace and let application decide fate of packet).

Current bridge netfilter state
ebtables
“The ebtables utility enables basic Ethernet frame filtering on
a Linux bridge, logging, MAC NAT.”[7]

It was forked from the iptables/ipv4 netfilter code base
more than a decade ago.

Some of the matching capabilities include the ability to test
on ip or ipv6 addresses, VLAN ids, the packet type as seen by
the kernel (multicast, broadcast, “this host” or “other host”)
and the packet nfmark (sometimes also called fwmark).

Packet mangling features offered by ebtables includes
stateless translation of MAC addresses and the ability to redi-
rect frames to the local network stack, pretending they were
addressed to the bridge MAC address.

netfilter hooks
Several hooks are placed in the bridge module to make pack-
ets available to the ebtables rules.

Those are:

• NF_BR_PRE_ROUTING first hook invoked, runs before
forward database is consulted.

• NF_BR_LOCAL_IN invoked for packets destined for the
machine where the bridge was configured on. This means
that ipv4 or ipv6 packets will be passed up the stack and
will be evaluated in the context of iptables (or ip6tables)
later.

• NF_BR_FORWARD, called for frames that are bridged to a
different port of the same logical bridge device. This is the
first hook where the bridge output port is known.

PREROUTING FDB

INPUT

Local stack

OUTPUT

FORWARDING

POSTROUTING

Figure 1: Bridge netfilter Hooks. Packets delivered to the
local stack will be processed by the next protocol handler,
e.g. the IP stack.

• NF_BR_LOCAL_OUT called for locally originating pack-
ets that will be transmitted via the bridge.

• NF_BR_POST_ROUTING called for all locally generated
packets and all bridged packets.

• NF_BR_BROUTING not a hook – used by the magic ebta-
bles “broute” table which can be used to have packets enter
the local stack without even hitting the main bridge code.

Diagram of the above:
There is nothing fundamentally broken with the placement

of these hooks. The only issue with them is that – like ipv4
and ipv6 family netfilter hooks – they are unique per names-
pace. This means that on a system with lots of bridge inter-
faces where only a small subsets of these need filtering rules
all the other bridges also pay the cost of the ebtables traverser
invocation.

Shortcomings and problems

The feature set provided by ebtables is limited to link-layer
matching and ability to match ip and ipv6 addresses in ether-
net frames.

The few network layer matches offered are duplicated code
– ebtables cannot use xtables targets or modules offered by
the ip(6)tables core from the ebtables rule set directly.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

The call-iptables layer
To overcome some of these issues the kernel provides
a bridge netfilter module, br_netfilter.ko, which
implements a feature referenced here as ”call-iptables”
layer, named after the sysctl that controls this behaviour:
net.bridge.bridge-nf-call-iptables.

When the module is loaded, it will register bridge netfil-
ter hooks that then call the ipv4/ipv6 netfilter hooks from
the bridge layer based on the ethernet type. In other words,
bridged packets will pass though the PRE, FORWARD and
POSTROUTING chains of the ip(6)tables rule set configured
on the host.

For this to work bridge netfilter will perform rudimentary
ip/ipv6 header sanity checks that would normally be done by
the IP stack and then calls the ip/ipv6 netfilter hooks. This
has a few advantages, especially from a feature set perspec-
tive – the feature set offered by the ip/ip6tables and netfilter
infrastructure becomes available. This also includes support
for connection tracking and Layer 3/Layer 4 NAT/PAT with
the iptables SNAT, DNAT and REDIRECT targets in the ipta-
bles nat table.

The downside is that introduces several layering violations
and other problems.

In ebtables, the in and out devices that can
be matched with the ebtables --in-interface and
--out-interface specifies the name of the bridge port.
However, iptables has no notion of ”bridges” – by the time
a packet is fed to a netfilter hook the in and out interface is
the name of the logical (bridge) interface, for example br0.
iptables provides a match (physdev) solely for the pur-
pose of examining the ”bridge” details of a packet. Packets
that were sent to an IP address configured on the bridge ma-
chine itself or are currently being bridged (passed to another
interface) can thus be ”queried” for the interface name of the
bridge port they originally arrived on or are in the process of
being sent out by.

This feature comes with additional cost to the kernel – even
if a packet has not crossed a bridge interface, every clone or
free operation on an sk_buff (the data structure used to
represent network packets) needs to check for the presence of
this bridge meta data.

Another problem is that the ipv4 and ipv6 netfilter may call
into ip or ipv6 stack functions which make the perfectly rea-
sonable assumption that they’re called from the ipv4 or ipv6
stack. This is not true for call-iptables – therefore, for
every hook invocation of the ip/ipv6 hooks the skb->cb[]
(control buffer, contains meta data from the layer that cur-
rently owns the packet) needs to be saved and restored to inet
or bridge state.

For packets that are directed to the bridge, with
call-iptables mode enabled, we invoke ip
PRE_ROUTING hook twice. First from the bridge layer as
part of the call-iptables feature, and again from the
normal IP stack.

To suppress the re-invocation, the bridge netfilter code
has to register a ”sabotage” hook that suppressed the re-
invocation early on. Again, another small piece of overhead
that is imposed on a bridge call-iptables setup.

More issues with current approach
When VLAN was introduced, ebtables gained the ability to
match on the VLAN ID. But xtables cannot be used to filter
on the VLAN id.

A router configuration or end host doesn’t care about this;
it can just use the device interface name (”-i eth0.42”).
To work around this, the call-iptables layer has a
bridge-nf-filter-vlan-tagged mode – if enabled,
such skbs are pushed to ip(6)tables anyway. This “works”
because the kernel keeps VLAN headers only as meta data,
but it comes at a price – all VLANs must have distinct IP ad-
dresses. Otherwise, VLAN isolation breaks down because ip
defragmentation and connection tracking has no means to tell
packets from those VLANs apart.

There is more subtle interaction between some features
of xtables and connection tracking when invoked via the
call-iptables infrastructure. For instance, the kernel
can crash quite soon if the NFQUEUE target is used from the
xtables ruleset1.

Lastly, NAT support, while functional, is problematic from
an architectural standpoint. The bridge code needs to make
calls into the ipv4 or ipv6 forwarding database to obtain the
new destination (which also means that the bridge needs a
routing table for this to work) and its possible that the bridge
has to loop an skb through the ipv4 neighbour code because
it has to look up a new destination MAC address if the IP
address is changed by L3 NAT handling.

Current state of nftables bridge
What is nftables
“nftables is the project that aims to replace the existing
ip,ip6,arp,ebtables framework.”[4]

Aside from providing the new userspace tool “nft” it is
also a new packet classification framework based on lessons
learnt from ip and ip6tables. nftables was presented at Net-
filter Workshop 2008 (Paris, France) and released in March
2009 by Patrick McHardy. Nftables is available since Linux
3.13 (January 2014).

nft not only provides a replacement for arp-, eb-, ip- and
ip6tables, it also adds the new “inet” and “netdev” families.
The inet family is a pseudo-family for combined ipv4/ipv6
rule sets.

family old tool nft table
arp arptables arp
bridge ebtables bridge
ipv4 iptables ip
ipv6 ip6tables ip6

Table 1: commands and nft table family names of the existing
protocol families

The netdev family can be used to attach a ruleset to an in-
terface. Those rule sets are evaluated early, even before an

1brief version: bridge clones skbs when flooding packets, but
connection tracking assumes an skb in “new” conntrack state is only
visible to current CPU

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

skb is handed to a bridge or ip stack. It can be used for ar-
bitrary filtering of any protocol, including arp, ppp frames or
any other Layer two network protocol that has a notion of a
network device.

Unlike iptables, all protocol specific details reside in the
userspace tool. The nftables kernel part contains an inter-
preter that provides a small pseudo-instruction set. These
instructions are called expressions and provide a specialized
task each.

This also means that all supported address families have
access to the same feature set. There is no need for duplica-
tion as with the old ebtables, arptables and iptables tools.

If a user specifies an nftables rule that tests for a particular
source ip address, the nft tool will use the payload expression
to load the ip address into a register and then use the cmp
instruction to compare that register with the ip address. The
kernel has no understanding of the ip address itself, it just
loads some data and then does a comparison.

Example: Given the rule
nft add rule bridge filter forward \

ip saddr 10.0.0.0/8 accept

nft will send following instructions2 to the kernel:
[payload load 2b @ link+12 => reg1]
[cmp eq reg 1 0x00000008]
[payload load 4b @ network+12 => reg1]
[bitwise reg 1 = (reg=1 & 0x00ffffff)]
[cmp eq reg 1 0x0000000a]
[immediate reg 0 accept]

The first two lines add a test for ether type ip. This
is injected by nft behind the scenes to avoid false positive
matches when the bridge processes e.g. an ipv6 packet. The
next line loads the source ip address into a register, masks
out the part of the netmask that we are not interested in, and
then compares the result to the desired ip address. As the rule
specifies the bridge family, the rule set will be attached to the
NF_BRIDGE forward hook point.

Inserting the same rule as rule ip filter results in
exactly the same code – except that the implicit ip depen-
dency is not added since its not needed in the ip protocol
family.

This also showcases another important bit about nftables
– all the protocol details are in userspace, the kernel merely
loads a number of bytes from a given offset into a register.

nftables supports three bases for offsets. They can be rela-
tive to the link layer header, the network header or the trans-
port header.

Another major advantage over the old tools is the addition
of sets and maps. In nft it is possible to jump directly to chains
with a verdict map, for instance:
add rule bridge filter prerouting vmap \

meta iifname { bport0 : jump vm_one, \
bport1 : jump vm_two, \
bport2 : drop }

Unlike the ebtables equivalent, which would involve three
rules that are tested one after another, this results in only two
instructions, regardless of the number of elements in the map:

2slightly trimmed for brevity

[meta load iifname => reg 1]
[lookup reg 1 set map0 dreg 0]

First instruction loads the name of the bridge port into a
register, second instruction sets the verdict register based on
the lookup result in the anonymous set.

This is especially useful if each bridge port should have a
specific filter policy.

In case there are many bridges or bridge ports on a system,
but only a very small amount of bridge ports need filtering, it
might be advisable to instead use the netdev family and attach
the policy to the device instead.

Example: This adds the mytable table with an ingress hook
to the device eth0.

table netdev mytable {
chain myingress {
type filter hook ingress \

device eth0 priority 0;
}

}

Then, the earlier example can be attached like this:

nft add rule netdev mytable myingress \
ip saddr 10.0.0.0/8 accept

The advantage is that traffic on other interfaces does not
even result in a call into the netfilter core anymore provided
no other hooks are registered on the system.

nft bridge
The nft utility and the kernel already implements the full ebta-
bles feature set with the exception of the “arpreply” target.
Since the bridge family is only a subset of nftables all the
other features like sets or verdict maps are also available.

• bridge filtering is usually done via both ebtables and ipta-
bles rulesets

• because thats the only way to get conntrack and iptables
features

• corner cases will result in kernel panic

• another problem: netfilter hooks are per namespace, not
per bridge

• 500 bridges and only one with real filtering rules: not pos-
sible

• ebtables == ’iptables from 2001’ (e.g. rwlock in main tra-
verser)

nfqueue for nft bridge
The nfqueue mechanism allows an ip or nftables ruleset to
pass a packet to userspace which can inspect and even modify
the packet. The userspace program must drop or re-inject the
packet into the kernel[3].

While nfqueue is already available in nftables, the netfilter
backend that performs the queuing to userspace only works
for packets queued from the ip, ipv6 or inet families.

While the technical reasons for this limitation can easily
resolved, several considerations need to be made beforehand.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Queuing from application point of view
Userspace programs use a netlink[5] socket to bind a nfqueue
via a 16bit identification number. Packets queued by the ker-
nel can then be received via this socket encoded as nfnetlink
messages. The kernel provides several meta data attributes in
addition to the actual packet data.

Examples of attributes provided are:

• the family and hook that queued the packet

• in and outgoing interface index

• packet nfmark

• the packet payload

• link layer hardware address, if available

Since nfqueue is currently only supported with ipv4/ipv6
packets, the packet payload starts with the IP or ipv6
header and contains as many bytes as userspace requested.
Userspace can also alter the packet as needed – the kernel
will detect changes in the ip header and will re-lookup the
route.

Considerations for bridge nfqueue
While we do not necessarily have to support all features that
are currently possible with the ipv4/ipv6 families, we should
make sure to not prevent later addition.

Some functionality that might be interesting or desirable
to have at some point, is the ability to perform packet pay-
load rewrites, including the ability to add or remove existing
VLAN headers.

Because most typical mainstream Network Adapters per-
form VLAN header offloads, the VLAN header is not part of
the payload area but rather kept as meta data in the kernel in-
ternal skbuff structure. This is true even for non-offload case,
the kernel will do this VLAN header stripping in software if
needed. This happens very early, before packet sockets (tcp-
dump) and also before all netfilter hooks including the netdev
family ingress hook.

Last but not least it makes sense to attempt to make the
new bridge backend generic enough to also support nfqueue
for the netdev family.

So in summary:

• skb->data pointer is exactly after the L2 header (if any).

• VLAN headers are always stored as skb meta data

nfqueue: Implementation
One way to implement it would be to just re-use the ex-
isting payload netlink attribute. This however has several
drawbacks: We would have to push the mac header so
skb->data points to start of mac header, then pull it again
after re-inject so stack finds it pointing to the expected place.
Not doing this would mean the L2 header isn’t accessible
by userspace so we would not be able to implement VLAN
header addition, for example.

Another problem is that we would need to undo the VLAN
header stripping done by core stack. Finally, when using an
approach that just re-used the payload attribute with starting
point being the L2 header – it becomes next to impossible

to support packet mangling in userspace. The kernel would
have to parse the L2 header to see if a VLAN tag got added
or removed and so on. In the ingress case this is even worse
since the L2 header could be anything.

Considering all of this the most sensible choice is to add
new attributes:

• attribute containing the L2 header, i.e. the data pointed to
by skb->mac_header.

• attribute containing the VLAN header.

This would also allow VLAN header stripping or addition,
for example by allowing userspace to submit a verdict mes-
sage that also provides the L2 header attribute.

Since netlink provides size of attributes all the kernel needs
to do is to possibly expand headroom, fix up any other skb
offsets (network, transport headers) and then replace the old
header. Something similar could be added for removing or
changing VLAN information.

conntrack
The other much desired feature for bridges is stateful fire-
walling. This is also known as Connection tracking[6].

The Linux conntrack subsystem offers stateful tracking for
several transport protocols, including TCP, UDP and SCTP
on top of either ip or ipv6. Since conntrack hooks in the ip
and ipv6 families only, it is not available on a bridge unless
the call-iptables layer is used.

To allow native hooking, we should first consider some de-
tails.

Defragmentation
The prerequisite for meaningful stateful connection track-
ing is IP defragmentation, otherwise the kernel cannot match
fragments to an existing connection.

For ip/ip6tables, the protocol defragmentation modules
(nf_defrag_ipv4, nf_defrag_ipv6) hook at pre-
routing, any fragmented packet is queued for defragmenta-
tion. There is only an artificial dependency on the defrag
module in order to ensure that loading a conntrack module
the modprobe dependency resolution also loads the defrag
module for us.

Unfortunately, defragmentation on Linux bridges has
limitations, since defragmentation is only provided by
the ipv4/ipv6 netfilter modules one needs to enable the
call-iptables feature sysctl.

As the IP stack neither considers the bridge interface nor
VLAN ids when merging fragments, the network separation
provided by VLANs is removed – with overlapping addresses
in different VLANs packets from distinct networks can be
merged by fragment reassembly. This also happens when a
host has multiple bridges configured that handle distinct L2
networks but share the same overlapping L3 address space.

Defragmentation – Bridge implementation
The are two possible approaches to implement defrag for
bridge.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

1. stub module that just registers a PRE_ROUTING bridge
hook and then calls the ipv4 ipv6 defragmentation hooks
based on skb->protocol

2. a fully functional module that implements defragmentation
directly and also automatically considers MAC addresses,
VLAN id and the arriving interface index to separate pack-
ets when defragmenting.
Either solution could be implemented implicitly – module

load enables functionality – or explicitly via ruleset activa-
tion. In the former case, one would simply load a module,
for example modprobe nf_defrag_bridge, in the lat-
ter case, one would need to add a rule for it, for instance
nft add rule bridge raw pre defrag to enable
defragmentation. Implicit activation, while simpler, doesn’t
have the same flexibility that is offered by rule based config-
uration. For instance, one could enable defragmentation only
on a selected bridge port or for a limited set of hosts, provided
that no connection tracking is used.

Connection Tracking on bridges has the same problem as
defragmentation once IP address spaces in distinct networks
overlap. We will discuss solutions in the next section.

Connection Tracking
The canonical solution for the “overlapping addresses” use
case on routers (for example when using policy based routing
to separate networks) is the use of connection tracking zones.

Simply put, one configures iptables rules to set a conntrack
zone (a 16 bit number) in the raw table, before conntrack in-
spects the packet. This zone id serves as an additional key to
make a distinction between otherwise identical flows. Exam-
ple rule set that puts traffic on eth0 into a separate zone:
iptables -t raw -A PREROUTING \

-i eth0 -j CT --zone 42
iptables -t raw -A OUTPUT \

-o eth0 -j CT --zone 42

On a bridge we could introduce a similar mechanism, for
instance something like
add rule bridge track pre ct zone set \

vlan id map { \
1 : 1, 2 : 2, }

While it would be possible to add the VLAN id to the con-
nection tracking tuples to make them distinct entities auto-
matically this doesn’t solve all scenarios. For example one
might have to cope with overlapping addresses in different
bridge interfaces, or the overlap might be between a bridged
VLAN and a GRE tunnel endpoint on the same host.

Conclusion
It appears best if both a defrag and conntrack functional-
ity for bridge netfilter is implemented as a dissection step
that calls the desired ipv4 or ipv6 functionality based on the
skb->protocol value and rely on ruleset based configura-
tion to ensure that distinct networks with identical addresses
are kept separate.

Defragmentation for bridge is thus straightforward. The
(to be written) bridge conntrack would just directly call the
bridge defrag functionality.

add rule bridge track prerouting \
ip saddr . tcp dport \
{ 10.1.2.3 . 21, 10.1.2.1 . 2121 } \
ct set helper ftp

Figure 2: Explicit conntrack activation via nftables rule set

Since connection tracking can alter packets and im-
poses additional processing overhead it appears preferable
to restrict tracking to flows that need this and require ex-
plicit conntrack setup – an inverse logic to what can be
done with the iptables “-j CT --notrack or the older
“-j NOTRACK” targets. Also, in the ipv4 and ipv6 netfilter
conntrack engine automatic helper assignment has been dep-
recated since 2012 for security reasons ([2]), so to use helpers
like ftp or sip will soon require manual setup for ipv4 and ipv6
too.

An example of how this could look like with nftables is
given in figure 2.

To request connection tracking when clients connect to the
ftp server at the specified addresses.

For traffic in the reply direction and packets related to the
flow in some way, ICMP messages for Path MTU discovery
for example, we cannot use explicit configuration as we need
to examine all packets traversing the bridge. Because we can-
not tell whether a fragment matches an existing flow we also
need to enforce defragmentation for all packets.

Conntrack: Implementation
IPv4 (and IPV6) conntrack uses several hook points:

• PREROUTING: conntrack input

• INPUT: helper, confirm

• OUTPUT: local conntrack

• POSTROUTING: helper, conntrack confirmation

In addition to these hooks, the IP conntrack modules de-
pend on their respective defragmentation modules which will
hook in PREROUTING and OUTPUT before conntrack can
examine the packet.

A bridge conntrack doesn’t need to consider INPUT and
OUTPUT – the IP stack will already handle local packets.
bridge conntrack needs to add an implicit hook for processing
packets that may belong to or might be related to existing
connections.

This results in following hooks in addition to explicit rule
set based invocation:

1. PREROUTING: hook to pick up related and reply traffic

2. POSTROUTING: helper invocation (e.g. to create expec-
tations)

3. POSTROUTING: conntrack confirmation (commit a new
conntrack entry to main conntrack table)

The first hook would perform a lookup in the conntrack
table.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

PREROUTING

conntrack reply handling defragmentation

POSTROUTING

conntrack helper handling

conntrack confirmation

Figure 3: Hook placement for bridge connection tracking.
Only Pre and Postrouting hooks are used. The conntrack re-
ply hook also handles defragmentation.

If a match is found (packet is in original or reply direction
of already existing connection) the conntrack can be associ-
ated with the packet and that packet can continue processing
within the bridge.

If we don’t find a matching connection, this hook would
instead search for a matching expectation (packet is related to
an existing connection – an ICMP error, FTP data connection,
etc).

If the packet cannot be associated with an existing flow ei-
ther via established or related matching, then the hook would
– unlike the current ipv4 and ipv6 conntrack implementations
– return without creating a new connection. Instead, it would
be up to the user to configure the nftables bridge ruleset to
decide if tracking should be performed or not. Therefore,
the bridge conntrack would only pick up a new connection
if the packet matches a “conntrack rule” similar to the exam-
ple given in figure 2.

The second and third hooks would work exactly like their
ipv4/ipv6 counterparts – it would be required to support cre-
ation of expectations e.g. for FTP DATA transfers or RTP
streams announced by SIP messages. Conntrack confirma-
tion is needed to commit a newly allocated conntrack entry to
the main table. This happens as the last step so that we do not
add conntracks to the main table if the packet is going to be
dropped by a rule.

Figure 3 provides a summary of the new hooks that need to
be registered with the nftables bridge family.

For local traffic there is one problem: We end up with in-
voking the POSTROUTING hooks twice, once from the IP or
IPV6 hooks, once via the bridge hooks proposed here.

The confirm hook is unimportant – it is a no-op for virtually
all cases. All it does is commit newly created conntracks into
the global conntrack flow table.

But invoking the helper hook twice is a real issue. The
most simple solution to this is to do the following:

1. add a ’bridged’ marker bit to the conntrack (or the helper
extension).

2. when assigning helper via bridge conntrack expression, set
this bit

3. from the IP conntrack POSTROUTING hook, clear the bit
again if it was set.

4. from the bridge conntrack POSTROUTING hooks, only
invoke helper callback if that bit is set

The third step is needed to ensure that a packet arriving
on a bridge interface that is then routed and later sent out
via another bridge interface doesn’t result in another hook
invocation.

Alternatively, one could change the last step to clear
skb->nfct. However, doing so also removes the ability
to do stateful filtering at the bridge layer and limits features
for traffic classification at the egress stage, so this solution
should be avoided.

Summary
Development to add nfqueue for bridge is already being
worked on by Stephane Bryant, see [1], work on bridge con-
nection tracking has started as well, following a rule-based
activation model.

References
[1] Bryant, S. 2016. netfilter: bridge: add

nf afinfo to enable queuing to userspace. patchwork.
https://patchwork.ozlabs.org/patch/567977/.

[2] Leblond, E. 2012. Secure use of iptables and connec-
tion tracking helpers. blog. https://home.regit.org/netfilter-
en/secure-use-of-helpers/.

[3] netfilter.org project. 2016a. iptables-extensions. netfil-
ter.org web site. http://git.netfilter.org/iptables/tree/
extensions/libxt NFQUEUE.man?h=v1.6.0.

[4] netfilter.org project. 2016b. The netfil-
ter.org nftables project. netfilter.org web site.
http://nftables.org/projects/nftables/index.html.

[5] Pablo Neira Ayuso, Rafael M. Gasca, Laurent Lefèvre.
2010. Communicating between the kernel and user-space
in Linux using Netlink sockets. Software: Practice and
Experience 40(9).

[6] Pablo Neira Ayuso. 2006. Netfilter’s Connection Track-
ing System. In :LOGIN;, The USENIX magazine, Vol. 32,
No. 3, pages 34-39.

[7] Schuymer, B. D. 2015. ebtables. netfilter.org web site.
http://ebtables.netfilter.org/documentation/what.html.

Author Biography
Florian Westphal is a contributor to the Linux kernel network
stack, in particular netfilter. He is also a member of the net-
filter core team.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

