
HW High Availability and Link Aggregation for Eth switch, NIC RDMA
and NIC SRIOV using Linux team/bonding

Or Gerlitz, Tzahi Oved

Mellanox

Ra’anana, Israel

ogerlitz@mellanox.com tzahio@mellanox.com

Abstract

The Linux kernel supports drivers for fast (10, 40 and 100Gbs)

witch and NIC networking hardware from multiple vendors. These

drivers implement the kernel software model for switch

(switchdev) and NIC (netdev, roce device) interfaces, where the

model includes certain offloading of traffic into HW. In many

environments, it's common to require high-availability and link

aggregation (LAG) for networking services. In this paper we show

how to apply the kernel software LAG model on device drivers that

actually offload traffic from the CPU (switch) or the kernel

network stack (NIC). This concept is achieved in practice with the

Mellanox mlxsw and mlx4 drivers in the upstream Linux kernel.

Keywords

Team, Bonding, LAG, offloads, switchdev, mlxsw, roce, sriov,

mlx4.

 Introduction

The Linux networking stack supports High-Availability
(HA) and Link Aggregation (LAG) through usage of the
bonding and team drivers, where both create a software
netdevice on top of two or more netdevs. These LAG
devices are set as master "upper" devices acting over
"lower" devices. The core networking stack uses a notifier
mechanism to announce setup/tear-down of such relations
(referred to as linking / un-linking).

 We show how to take advantage of standard
bonding/team and their associated notifiers to reflect
software LAG into hardware and achieve enhanced
functionality.

 We present few use cases dealing with physical switch,
NIC RDMA and NIC SR-IOV Virtual Functions (VFs). In
all cases, the creation of a bond/team LAG above
Switch/NIC port netdevices is propagated to the device
driver using network notifiers.

 In the physical switch case, the device driver can either
program the device to create the hardware LAG, or forbid
the operation in case hardware resources were exceeded or
because it lacks support for certain LAG parameters. The
creation of further upper devices on top the LAG is
propagated to the lower port netdevices in the same way as
if the upper device was created directly on top of them.

In the NIC RDMA case, the device driver would create
RoCE (RDMA-over-Ethernet) software device with only
one port such that RDMA connections offloaded from the
networking stack over this device are subject to LAG.

In the NIC SRIOV case, the virtual machine VF driver sees
a HW device with only one port. The HW setup done by the
host PF device driver causes the overall VF Ethernet traffic,
both conventional TCP/IP that goes through the VMs
networking stack and offloaded RDMA to be subject to HA
LAG.

 The paper begins with describing the Linux kernel LAG
model, elaborating on the network notifiers and when/how
they are invoked when LAGs are created/destroyed. Next,
we briefly review the switchdev model for supporting HW
switch ASIC and the Mellanox mlxsw driver which
implements the switchdev model. Following is the use case
of HW LAG based on SW bond/team over mlxsw switchdev
port instances. After that, we provide a sketch of the kernel
RDMA (Remote DMA) device model, RoCE (RDMA over
Ethernet) transport and describe the Mellanox mlx4 NIC
ASIC driver which supports both conventional Ethernet
net-device and RoCE functionality. Following that are the
use-case of HW LAG for RoCE traffic which is based on
SW LAG done on mlx4 ports and the use-case of HW LAG
for mlx4 SRIOV VFs (Virtual-Functions) which is based on
SA LAG over mlx4 Physical function (PF) ports.

 Other parameters to configure are methods for link
integrity monitoring, transmit hash function, etc.

Linux LAG model
The Linux bonding and team drivers allow one to aggregate
multiple network interfaces into a single logical “teamed” or
“bonded” software interface. The detailed functionality and
behavior of the grouped interface follows the setup mode.
Basically, different modes provide high-availability (hot
standby) or load balancing services. Other parameters to
configure are methods for link integrity monitoring, transmit
hash function, etc. Two specific modes of interest in our
context are active-backup and LACP (802.3ad).
 Under the active-backup mode only one of the underlying
devices in the bond is active. A different device becomes
active if, and only if, the active one fails. The bond's MAC

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

mailto:ogerlitz@mellanox.com
mailto:tzahio@mellanox.com

address is externally visible on only one port (network
adapter) to avoid confusing the switch.

 The IEEE 802.3ad dynamic link aggregation mode
creates aggregation groups that share the same speed and
duplex settings and utilizes all the devices in the active
aggregator according to the specification. Device selection
for outgoing traffic is done according to the transmit hash
policy, which may be based on different layers of outgoing
packets: link (L2), network (L3) or transport (L4) and
combinations of them.

Linux network notifiers

The kernel network notifiers allow sending notification to
subscribed consumers in the networking stack on a change
which is about to take place, or that just happened. The
notification contains events type and affected parties.
Depending on the notification type and data, the consumers
can ignore the change, refuse the change, or conduct certain
action based on the notification.

 In the kernel networking stack terms, bonding and team
devices are referred to as upper devices and the teamed
devices as lower devices. The bond/team is an upper device
for the teamed interfaces, and the teamed interfaces are
lower device for the team/bond.

 When a LAG (bond/team) is set, the notifications which
are being sent to the lower devices are: pre-change upper
(NETDEV_PRECHANGEUPPER) and change-upper
(NETDEV_CHANGEUPPER). If a teamed device returns
error when they get the pre change upper notification, the
operation of adding that device to the team fails.

 Linux Ethernet switch device driver model (switchdev)

The Ethernet switch device driver model (switchdev) is an
in-kernel driver model for switch devices which offloads the
forwarding (data) plane from the host CPU.

 During switchdev driver initialization, the driver will
allocate and register a net-device structure for each
enumerated physical switch port, called the port netdev. A
port netdev is the software representation of the physical
port and provides a conduit for control traffic to/from the
controller (the kernel) and the network, as well as an anchor
point for higher level software constructs such as bridge,
team/bond, VLAN, tunnels, and L3 router instances. Using
standard netdev tools (iproute2, ethtool, etc), the port netdev
can also provide to the user access to the physical properties
of the switch port such as physical link state and I/O
statistics.

In the switchdev model, the user is setting up a certain
standard kernel software configuration (for example a
bridge) over the port netdevs. This results in a hardware
configuration that is derived from the software one which
implements the required functionality in HW. In the bridge
example, after the Linux bridge is set over the switchdev

ports, FDB learning, forwarding and aging is offloaded to
the HW.

 For proper operation, although the fast path is offloaded

to the HW, the ASIC is expected to be able to trap packets

belonging to control protocols and send them towards the

CPU. For example, proper bridge learning of multicast L2

entries (MDB) depends on trapping IGMP packets and

have them received into the kernel from the port netdevs.

Mellanox switchdev driver (mlxsw)

The mlxsw driver is a switchdev driver for 10/25/40/50

and 100Gb/s Mellanox Spectrum Ethernet Switch ASIC.

By version 4.6 of the upstream kernel, the driver

implements bridge forwarding offload for 802.1q and

802.1d bridges which also includes vlan filtering (implied),

and HW ageing. It also supports port splitter functionality

and offloading bond/team LAG to HW which relates to the

subject of this paper.

HW team/bonding with the mlxsw switchdev driver

In the switchdev model, when a team/bond is set over

netdev ports that represent switch ports, the required result

is a HW LAG set in the switch ASIC with these ports being

members of that LAG.

The state-machine which is needed for proper operation

of the 802.3ad LAG is not expected to be HW offloaded.

This includes sending/receiving LACP packets and

maintaining the LAG according to the spec. For that end,

LACP packets received from peers should be trapped and

sent towards the CPU, and on the other hand, the kernel

should be able to xmit LACP packets over the switchdev

ports exposed by the HW driver.

The mlxsw driver and Spectrum ASIC co-operate to

implement this LAG offloading. The driver subscribes to

networking notifiers in order to be able to accept / reject

and properly act when the ports netdevs are added

(deleted) to (from) team or bonding instance.

The user creates the software team/bond and starts

adding mlxsw switchdev ports there. The team/bonding

driver code first sends a pre change-upper notification to

subscribed consumers. In this step, the callback installed

by the switchdev driver is invoked, the driver checks the

team mode and refuses the operation (return error) if they

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

can’t offload it (for example when the team mode is not

LAG). Next, the team driver continues with the normal

flow of setting up a team instance. Once done, the team

driver sends the change-upper notification. At this point in

time, the switchdev driver checks if it has already created

HW LAG which corresponds to this SW LAG, if not, it's

created. Finally, the port is added to the HW LAG.

Linux RDMA over Ethernet (RoCE) and RDMA-

CM model

The upstream Linux RDMA stack supports multiple

transports: RoCE, Infiniband and iWARP, with RoCE

standing for RDMA over Converged Ethernet.

RoCE HW supports Infiniband RC (IB Reliable

Connection) transport over Ethernet links. RoCE V2

(upstream since 4.5) uses IBTA transport headers over

UDP and hence being routable across IP subnets. RoCE

traffic uses the IPv4/6 addresses which are set over the

regular Ethernet NIC port netdev, as of other IP, but non

RoCE traffic.

RoCE applications use the RDMA-CM (Connection

Manager) API for control path and verbs API for data path.

Similarly to the switchdev case, the control path works

through the kernel networking stack and the data-path is

offloaded from the stack. However, unlike the switchdev

case, the HW ASIC here is a NIC serving applications

which do run on the local CPU. Hence, the data-path is

offloaded from the stack but not from the CPU. The

applications gain access to dedicated HW queues exposed

by the RoCE HW driver and manage their data-path

communication over these queues.

Establishing a RoCE session is made of three steps,

which are implemented by the RDMA-CM:

1. Address resolution – does local route lookup

and call ARP/ND services to resolve the

local/remote IP addresses to local device/port,

vlan and remote MAC address.

2. Route resolution – does path lookup (relevant

only to IB networks).

3. Connection establishment – invokes the RoCE

CM (Connection Manager) to wire the

offloaded connection HW end-points, e.g.

using three way hand-shake as defined in the

IBTA spec.

The data-path verbs API has the following elements:

1. Post receive buffer – hand receive buffers to the

NIC

2. Send/RDMA – send message or perform RDMA

operation

3. Poll– poll for completion of Send/RDMA or

Receive operation

4. Asynchronous completion handling and fd (for

user-space applications) semantics are supported

The data-path API has also "slow" entries which are used

by consumers to register application memory for direct

HW DMA access (includes protection and translation),

create HW end-points (Queue-Pairs) and completion

queues. RoCE HW drivers expose RDMA device (struct

ib_device) to the kernel. Device instances expose all the

above data-path operations and have association with the

NIC port netdevice. This device serves kernel and user-

space RoCE applications, and user-space Raw Ethernet

applications such as DPDK.

HW Bonding with the Mellanox mlx4 RoCE driver

The upstream mlx4 driver implements Ethernet and RoCE

functionality for the Mellanox ConnectX3 NIC ASIC. Each

port of the HW NIC is exposed as both Ethernet netdevice

through the mlx4_en driver and as RoCE device through

the mlx4_ib driver. The Ethernet port netdevice serves for

plain Ethernet kernel networking and control pass for the

RDMA stack (ARP/ND address resolution) as explained

above.

In a similar manner to the mlxsw case, when a SW

LAG (bond) is set over two netdevices corresponding to

two ports of the same ConnectX NIC, we would like to

achieve LAG functionality for RDMA sessions offloaded

from the network stack as that functionality applies to plain

TCP/IP sessions which are not offloaded.

To do that, network notifiers are being registered by the

mlx4 Ethernet driver, which act on the

NETDEV_BONDING_INFO event. This is indeed a bit

less elegant/generic versus the mlxsw LAG offload which

works over both team and bonding. Once the driver

realizes that a LAG of type active-backup or LACP is set

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

over two mlx4 ports, the RoCE devices that correspond to

these ports are destroyed and a new RoCE device which

logically corresponds to the LAG is created. The new

RoCE device has only one port which is virtual. RoCE

sessions created over this device enjoy from HW LAG

functionality as they were TCP sessions established over

the SW LAG.

It's common for transmit hash policies used by SW

LAG solutions to make sure packets belonging to the same

TCP session would be transmitted over the same port of the

LAG. Here we set for each RoCE session its base port over

which the session will run as long as the Ethernet port is

active in the LAG. If this port stops to be active, such

sessions fail-over to run over the other port, and when it's

active again, they fail-back to their base-port.

SRIOV primer

Traditional hypervisors expose emulated or para-virtual

devices to guest virtual machines and multiplexes the I/O

requests of the guests onto the real hardware. More recently,

there has been an effort to offload those tasks to I/O devices

themselves. SR-IOV is a specification by PCI-SIG that

allows a single physical device to expose multiple virtual

devices. Those virtual devices can be safely assigned to

guest virtual machine giving them direct access to the

hardware. Using hardware directly reduced the CPU load on

the hypervisor and usually results in better performance and

lower latency.

 Under SRIOV the physical function (PF) is the primary

access point for control and management which includes

creation of virtual functions (VFs) and assignment of

various parameters/policies to be either exported to the VF

or enforced on the VF such as default MAC address, default

vlan and priority, max/min rate for VF traffic, virtual link

state and spoof check policy.

HW Bonding with the Mellanox mlx4 SRIOV PF driver

The Mellanox mlx4 driver supports SRIOV. In the

ConnectX architecture, the VF device driver control path

goes through the PF driver using a dedicated communication

channel, where the fast data-path (post send/receive buffers,

start DMA ops, post HW door-bells and poll for copletion),

goes directly to the HW, as expected under SRIOV.

 This proxying nature of the control path allows the PF

driver to provision certain aspects to VF devices in a non 1:1

manner versus the HW properties. One of these elements is

the number of ports for VF devices. Under a configuration

directive, the PF would act such that the VF driver sees a

virtual HW device with one port, even though the HW/PF

device has two ports and two netdevice instances running

over them.

 When such single ported VF is exported to VM and the

PF Ethernet interfaces are bonded, the VM stack and

applications running over the VF enjoy from HW LAG

functionality transparently.

 Note that this applies to all VM traffic that goes through

the VF device: plain VM kernel Ethernet TCP/IP, kernel and

user-space RoCE and user-space Ethernet (DPDK).

Conclusion

The Linux kernel network stack supports setting SW LAG

that provide high-availability and load-balancing for

applications through either simple active-backup policy or

sophisticated link aggregation methods. We have shown

how to offload a standard SW LAG built over HW device

driver ports into a HW LAG for three use cases: physical

switch (switchdev) driver, NIC RoCE driver and NIC

SRIOV VF driver. In all the cases, no further configuration

has to be carried out in end-nodes or applications that run

over the LAG devices.

Acknowledgements

I'd like to thank Ido Schimmel for his assistance, support

and fun minutes while preparing the presentation and the

paper. Thanks to Jack Morgenstein, Moni Shoua and Rony

Efraim for the joint work we did on the design,

development and upstream submissions for the mlx4 RoCE

and VF LAG offload solution. Thanks to Jiri Pirko for his

inspiration, push and dedication for upstream way of

developing drivers to Mellanox switch/NIC hardware and

specially for aligning the design of the upcoming HW

SRIOV LAG in the mlx5 driver to follow proper NIC e-

switch model.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Bibliography

1. Feldman S, Pirko J - Switchdev documentation – linux

kernel source tree:

Documentation/networking/switchdev.txt

2. Lesokhin I, Eran H, Gerlitz O - "Flow-based tunneling

for SR-IOV using switchdev API", netdev 1.1

3. Pirko J, Ido S, Elad R – "mlxsw: spectrum: Add initial

support for Spectrum ASIC" upstream kernel commit

56ade8fe3fe1

4. Pirko J - "Merge branch 'bonding-team-offload'"

upstream kernel commit c5b8b34c3f415

5. Pirko J, "Hardware switches - the open-source

approach" netdev 0.1, http://people.

netfilter.org/pablo/netdev0.1/papers/Hardware-

switches-the-open-source-approach.pdf

6. Pirko J, libteam: team netdevice library

https://github.com/jpirko/libteam

7. Bonding driver documentation - linux kernel source

tree: Documentation/networking/bonding.txt

8. Shoua M, Gerlitz O - "IB/mlx4: Load balance ports in

port aggregation mode" upstream commit

c6215745b66

9. Shoua M, Morgenstein J, Gerlitz O - "net/mlx4_core:

Support the HA mode for SRIOV VFs too" upstream

kernel commit e57968a10bc

Author(s) Biography(ies)

Or Gerlitz is a Linux kernel developer dealing with

networking, RDMA and storage. He is the co-maintainer of

the upstream iSCSI RDMA (iSER) initiator driver and

highly involved in the Mellanox upstream NIC drivers

(mlx4 and mlx5).

Tzahi Oved is software architect dealing with software

interfaces to the Mellanox NIC ASIC product line.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

https://github.com/jpirko/libteam

