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Abstract

This paper presents KauNetEm, an extension to the Linux-
based NetEm emulator that provides deterministic network
emulation. KauNetEm enables precise and repeatable place-
ment of NetEm emulation effects, a functionality that can
considerably simplify several aspects of protocol evaluation.
KauNetEm can be instructed to drop specific packets, apply
a configurable delay or other emulation effects at predefined
points in time. The motivation for deterministic emulation,
the overall design of KauNetEm, and usage examples are pro-
vided.

1 Introduction
When conducting network research and/or developing com-
munication systems and mechanisms, ways of assessing the
behavior and performance of various protocols are necessary.
Often used methods include mathematical modeling and anal-
ysis, simulation, emulation and live experimentation. The
different methods have their respective merits depending on
what is to be assessed, and at which level of detail. For exam-
ple, when evaluating the performance of proposed algorithm-
s/mechanisms that are not yet supported by any implementa-
tion, analysis or simulation are the only possible choices. Fur-
thermore, the choice of method is also an implicit choice of
abstraction level. For instance, a simulation will capture ide-
alized high-level characteristics while real experiments cap-
tures both the effects of the object under study as well as all
its interactions with the surrounding environment.

Network emulation has for a long time been used to bal-
ance between these levels of abstraction. That is, emulation
enables experimentation with real applications and protocols
but controls the network characteristics. This is for exam-
ple useful when analyzing real transport protocol implemen-
tations over a wide range of emulated network conditions. Al-
though emulation can provide such balance, two critical prob-
lems often arise when emulating: (i) knowing exactly what is
emulated; and (ii) being able to exactly reproduce an emu-
lated scenario. For example, assume that we want to see how
packet loss affects the performance of file transfers using the
reliable transport protocol TCP. To conduct the experiments
we set up an environment where the TCP flow is sent through
a NetEm qdisc instructed to drop 1% of all packets. However,
such loss specification adds an amount of ambiguity. It is not
possible to know beforehand the exact amount of packets that

will be lost, and when these losses occurs. TCP is known to
be ineffective in recovering packets lost at specific positions
in a flow, making it important to know and/or control which
packets that are dropped. Moreover, if one wants to study the
effect of e.g. TCP tail loss (a known problem when packets
are lost at the end of a flow), it is impossible to construct such
a scenario using only a drop percent parameter.

KauNetEm solves this problem by allowing an experi-
menter to precisely apply emulation effects, either on a per-
packet basis or on a per-millisecond basis. We now consider
the TCP tail loss problem. TCP has problems with recovering
loss at specific positions in a flow, specifically in the begin-
ning and the end of transfers, where packet loss causes long
delays in the transmission. Therefore, losing one of the last
packets in a TCP flow might result in increased delays. Us-
ing a regular non-deterministic network emulator, it would be
hard to measure the effects of losing the last packet of a flow
as there are no mechanisms to accomplish that situation. This
is no problem using KauNetEm. Figure 1 shows the transmis-
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Figure 1: Transmission time of a 20-packet TCP flow experi-
encing a single packet loss at a certain position in the flow.

sion times of 20 different TCP flows. The evaluation is done
for two different settings of the net.ipv4.early_retrans vari-
able for a TCP sender running Linux kernel 4.4.5. Each point
represents the time required to transmit the entire flow, given
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that a certain packet in the flow is lost (given by the x-axis).
For instance, if the third packet is lost the transmission will
take 400 ms while a loss of the last packet will require more
than 650 ms. This kind of evaluation is simple to conduct
in KauNetEm, it is only a matter of creating a packet-loss
pattern that instructs the emulator to lose a specific packet,
e.g., packet no. 3, and load that pattern into the emulator be-
fore starting the TCP flow. KauNetEm does not only provide
this functionality for packet loss, but for all emulation effects
originally supported by NetEm.

The remainder of this paper is structured as follows. Sec-
tion 2 describes how to use KauNetEm through some easy
usage examples. The design of KauNetEm is covered in Sec-
tion 3, and the different emulation effects are described in
more detail in Section 4. The paper is then concluded with a
discussion on related works in Section 5 and some concluding
remarks including possible future work in Section 6.

2 Usage examples
This section demonstrates how to use KauNetEm in a few
simple examples. In the first example we instruct KauNetEm
to lose the third, fifth and seventh packet of an ICMP flow
headed towards Google. Then, we show how to apply em-
ulation effects on selected traffic only. Listing 1 shows how
to create a packet loss pattern. This particular pattern has
the size of 20 packets, i.e., it can be used to control whether
20 packets should be lost or not. The pattern is named
packet_loss.pkt and, when used, will cause packets three,
five, and seven to be dropped. The last line of Listing 1 sim-
ply moves the pattern to the tc1 load directory and renames it
to tc’s default file extension.

Listing 1: Creating a packet loss pattern
# Create a packet loss pattern of length 20 packets, that

# causes packets 3, 5 and 7 to be lost

$ patt_gen -pkt -s 20 -o packet_loss.pkt 3,5,7

# Move the packet to the tc dir and name it ploss.dist

# (.dist is the default extension)

$ mv packet_loss.pkt /usr/lib/tc/ploss.dist

When the pattern has been created and moved into the right
location, it is time to configure KauNetEm to use it. Listing 2
shows how this is done. First, tc is used to attach a KauNetEm
qdisc to the interface eth0. The qdisc is configured to have a
data-driven2 loss pattern, named ploss(.dist), attached to it.
As seen above, we configured the loss pattern to drop packets
three, five, and seven. Looking at the second part of Listing 2
we indeed see that the ICMP messages with the correspond-
ing sequence numbers are lost.

Listing 2: Loading a packet loss pattern and applying it on
ICMP traffic

1Traffic Control (tc) is used to create, configure, and manage all
Linux qdiscs.

2KauNetEm patterns are either data-driven or time-driven. When
data-driven, effects are applied on per-packet basis and when time-
driven effects are applied on per-millisecond basis as shown in Sec-
tion 3.3.

# Create and configure a KauNetEm qdisc that uses the
# (data-driven loss pattern "ploss.dist")
$ tc qdisc add dev eth0 handle 1: root netem pattern data loss ploss

# Start experiment traffic
$ ping -c 10 www.google.com
PING www.google.com (216.58.213.100): 56(84) bytes of data.
64 bytes from 216.58.213.100: icmp_seq=1 ttl=63 time=16.095 ms
64 bytes from 216.58.213.100: icmp_seq=2 ttl=63 time=16.175 ms
64 bytes from 216.58.213.100: icmp_seq=4 ttl=63 time=14.145 ms
64 bytes from 216.58.213.100: icmp_seq=6 ttl=63 time=16.838 ms
64 bytes from 216.58.213.100: icmp_seq=8 ttl=63 time=17.106 ms
64 bytes from 216.58.213.100: icmp_seq=9 ttl=63 time=20.592 ms
64 bytes from 216.58.213.100: icmp_seq=10 ttl=63 time=18.956 ms

--- www.google.com ping statistics ---
10 packets transmitted, 7 packets received, 30% packet loss
rtt min/avg/max/mdev = 14.145/17.192/21.131/2.196 ms

When setting up experiments, care must be taken to iso-
late and only apply emulation effects on the experimental
traffic. For instance, let us suppose that a routing or ARP
message were sent over eth0 in the above example, and that
this message was sent over the interface between ICMP mes-
sages with sequence numbers two and three. In that scenario,
KauNetEm would have dropped the non-ICMP message in-
stead of the ICMP with sequence number three. To avoid
such situations it is possible to use the iptables utility to mark
the traffic that is relevant for the experiment, and instruct
KauNetEm to only apply effects to packets with the corre-
sponding marking. Listing 3 shows an example of how this
is accomplished. In the example, a rule is created to mark all
ICMP packets with a certain number, in this case 42. Then,
when the KauNetEm qdisc is created and configured we in-
struct it to only apply the emulation effects on traffic that has
this exact marking. This KauNetEm-specific approach is a
straightforward approach to filter out which traffic to perform
emulation on, but other approaches are also possible. Using
a nested queuing discipline structure is discussed in [6], and
more details are also available in [8].

Listing 3: Filter specific traffic through KauNetEm
# Mark traffic to be experimented on with the number 42

$ iptables -A PREROUTING -t mangle -p icmp -j MARK \

--set-mark 42

$ tc qdisc add dev eth0 root netem fwmark 42 \

pattern data loss ploss

3 System Design Aspects
3.1 Design overview
A structural overview of the design is provided in Figure 2.
When implementing the deterministic emulation, a goal was
to minimize the amount of extra code necessary to achieve
this functionality. By using the emulation effect code already
implemented in NetEm, the added code mainly includes func-
tionality to perform pattern handling and control value de-
coding. As NetEm has functionality to import distribution ta-
bles into the kernel at runtime, KauNetEm reuses parts of this
functionality to transfer the patterns from user space into ker-
nel space. This transfer is done by means of netlink sockets
[14, 11]. The amount of data transferred into the kernel is, for
efficiency reasons, kept as small as possible, so care is taken
to ensure that the values for emulation effects are represented
in an efficient manner as discussed in Section 4.
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Figure 2: Structural overview of the design

3.2 Pattern management

As mentioned above, existing functionality is reused to trans-
fer pattern data from user space to kernel space. The em-
ulation pattern control data is structured into the same ap-
pearance as a NetEm distribution file and should therefore be
stored in the /usr/lib/tc/ directory expected by the tc distri-
bution import mechanism. To create these distribution-like
pattern control files, the patt_gen utility is used. The rela-
tionships among the different components are illustrated in
Figure 3. The patt_gen utility can get the pattern specifica-
tions directly from the command line, or read them in from a
comma-separated text file. Such text files could come from a
variety of sources depending on the purpose of the emulation
setup.

Figure 3: Pattern creation and import components

A possible future development is to integrate the relevant
aspects of the patt_gen functionality into tc, which would re-
move the need of the patt_gen user space utility. Furthermore,
handling of pattern files encoded as distribution files would
no longer be necessary, as a text file based pattern specifica-
tion would then be encoded by tc on the fly as patterns are
moved into the kernel.

Figure 4: Data versus time driven mode

3.3 Time vs data driven
KauNetEm allows the emulation effects to be employed ei-
ther in a data-driven or time-driven mode. For the data-driven
mode, the movement in the emulation control pattern is done
on a per-packet basis. For the time-driven mode, the pattern
forwarding is instead performed at regular time steps, with
the default time step being 1 ms. The two modes of pattern
forwarding are illustrated in Figure 4.

For data-driven patterns it is, as previously mentioned,
important to ensure that only the relevant traffic is passed
through KauNetEm. If an examination is using precisely
placed losses to evaluate the effect of some TCP mechanism,
it is important that no other traffic such as routing messages
or ARP is passing through the same KauNetEm qdisc as the
TCP flow.

Time-driven pattern movement is done as a function of
time and has as such no dependence on the traffic. For time-
driven patterns, the only traffic-dependent aspect is the ini-
tial start. The timer used to forward time driven patterns are
started when the first packet is observed by the qdisc where
KauNetEm is located. The emulation effects are then applied
at the time offsets specified in the pattern file, relative to the
first observed packet.

4 Emulation effects
KauNetEm supports several emulation effects. An overview
of the effects, and for which modes they apply, is shown in Ta-
ble 1. The different emulation effects require different types
of values to control them. Three different types of value rep-
resentations are used in KauNetEm, and in the following sub-
sections the emulation effects are discussed grouped accord-
ing to the type of values they use for control.

4.1 Rate and Delay
Rate and delay patterns allow for precise control of changes
to the emulated rate and delay. One use case where this could
be useful is to represent the characteristics of a link where
the link capacity varies over time, such as for wireless links.
For data-driven patterns the value of the rate/delay is changed
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Emulation effect Data-driven Time-driven
Packet loss X X
Delay X X
Rate X X
Bit error X -
Duplication X X
Reordering X -

Table 1: Emulation effects overview

when the indicated packet is received, and for time-driven
the value is changed at the indicated time. The rate and de-
lay values can vary over a wide range, and consequently the
value encoding needs to be able to represent a large range.
This large value range requirement opens up for a trade-off
between the space needed to represent the patterns, and the
precision with which values can be represented.

For rate and delay patterns an 11+4 floating point represen-
tation is used during the transfer into the kernel, which allows
values in the range 1 to 2.048 ∗ 1015 to be represented. Given
the restriction that each value should fit within a 16 bit short,
some constraints on precision are unavoidable. The level of
precision in the representation is dependent on the particular
value that should be stored. A graph showing the amount of
representational error is shown in Figure 5. From the graph it
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Figure 5: Value representation error

can be seen that the worst case error is less than 0.25%, and
it occurs just after 2.048. A value of 2.1549 ∗ 106 bps will for
example be stored as 2.15∗106 bps , and thus give a represen-
tational error of slightly less than 0.25%. Values with three
or less value digits, such as 9.65 ∗ 104 etc. will always have
zero representational error. When the values are decoded and
used inside the kernel, they are represented as 64 bit integers.

4.2 Packet loss and Duplication
Packet loss and duplication patterns allows controlled place-
ment of loss and duplicated packets. In data-driven mode, the
patterns control the drop or duplication of individual packets
in the received packet sequence. For data-driven mode, con-
trol is performed on a per-millisecond basis. For each mil-

lisecond that is indicated in a pattern, all packets that arrives
during that millisecond are dropped/duplicated. As these pat-
terns do not need to convey any values, they use a 15 bit
run-length encoding to represent positions in the packet se-
quence/time.

The pattern creation functionality allows both the explicit
placement of losses at particular positions, as well as creating
patterns where each packet has a certain loss probability, or
patterns where a specified number of losses should be placed
in a pattern of a specific size. It is important to note that the
use of a random loss probability, or alternatively a specific
number of randomly placed losses, can lead to a considerable
difference in result.

Consider a case where a TCP flow of 1000 packets should
be evaluated over a link with 0.2% losses. Using regular
stochastic emulation this means that each packet has a 0.2%
probability of being lost, and that the placement of lost pack-
ets will be different from run to run. With deterministic em-
ulation it is possible to create a pattern by specifying a 0.2%
packet loss probability. Using such pattern will create ran-
dom losses, but unlike the previous case the position of these
losses can be reliably replicated.

However, it is also possible to specify the number of pack-
ets that should be lost. Consider again the 1000 packet flow
which should be subjected to a 0.2% packet loss probabil-
ity. 1000 packets with 0.2% loss should equate 2 lost pack-
ets. However, the binomial probability mass function (PMF)
tells us that for 1000 draws at a 0.2% probability there is in
fact a probability of 0.16 that no packets at all will be lost.
Further, it is almost equally probable that one packet is lost
instead of the expected two. The relevant PMF is shown on
the left in Figure 6. By using the ability of the pattern gen-
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Figure 6: Distribution of number of packet losses for a 1000
packet flow when using 0.002 packet loss probability (left) or
deterministic 2 packets loss specification (right)

erator to create a pattern with a size of 1000 packets and the
required number of losses it is instead possible to create pat-
terns where the losses are placed randomly, but which always
has two losses. The resulting PMF is shown to the right in
Figure 6. As transport protocols are typically very sensitive
to the presence and placement of losses, it is clearly useful
to be able to ensure that losses actually occurs, instead of in-
cluding a fraction of runs where no actual losses occurred.

4.3 Reordering and Bit errors
Reordering and bit error patterns uses a value to signify the
number of packets to reorder a given packet, and where the
bit error should occur, respectively. Unlike the case for rate,
the required range of values is quite small. A 15 bit integer
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representation is used for these values. For reordering, the
value signifies the number of later packets that should pass
before the reordered packet is inserted back into the packet
stream. For bit errors, the value signifies the position of the
bit that should be flipped. The bit error patterns thus allows
for the insertion of one single bit flip, at a specified position
in a specific packet. In addition to these patterns, a planned
trigger value emulation effect will also use an integer value to
carry experiment specific trigger values to external listening
applications. This triggering mechanism can for example be
used to emulate various cross layer signals as done in [13].

5 Related Work
Network emulation has been in use, and been a topic of stud-
ies, for a long period. A general discussion of when emula-
tion is a suitable approach is provided in [9]. In Linux, em-
ulation functionality was early provided by NistNet [2]. In
the current Linux kernel emulation functionality is provided
by NetEm [6] and, as discussed in Section 3, it provides the
framework extended by KauNetEm.

Network emulation is also available in other operating sys-
tems, and in FreeBSD DummyNet [1] provides network emu-
lation functionality. DummyNet has also been made available
for Linux and Windows. With regards to deterministic emu-
lation, a DummyNet-based functionality has been developed
earlier, under the name KauNet [4]. A discussion of the sta-
tistical benefits of using deterministic emulation for packet
losses is provided in [3]. Deterministic emulation has also
been further extended to allow state-based application of em-
ulation effects, for example to emulate more complex inter-
actions such as DVB-RCS resource allocation [5].

Different emulators have different design considerations
and can differ in what emulation effects they can provide, and
what precision they provide. Works examining network em-
ulator characteristics include [15] which focus on the delay
characteristics, and [10] which considers the throughput char-
acteristics. A comparison of Dummynet, NistNet and NetEm
is provided in [12]. An evaluation focused on NetEm is pro-
vided in [7].

6 Conclusions and Future Work
Deterministic emulation has been useful for a range of proto-
col mechanism evaluations and implementation validations.
Allowing precise control of the placement of emulation ef-
fects allows detailed examination of protocol implementation
behavior, and may also have benefits from a statistical per-
spective. This paper has provided a first overview of the
Linux-based KauNetEm deterministic emulation capability,
which is built on top of the NetEm emulation infrastructure.

We consider KauNetEm to be an ongoing effort. As part of
our future work, we intend to improve the handling of multi-
ple simultaneous deterministic effects, and implement a new
trigger pattern effect.
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