
On getting tc classifier fully programmable with cls bpf.

Daniel Borkmann
Cisco

Switzerland
daniel@iogearbox.net

Abstract

Berkely Packet Filter, short BPF, is an instruction set ar-
chitecture that was designed long ago in 1993 [18] [1] as
a generic packet filtering solution for applications such as
libpcap/tcpdump and is long present in Linux kernels,
where it is also being used outside of networking, e.g. in sec-
comp BPF [15] for system call filtering.
In recent years, the Linux community replaced the nowadays
referred to as classic BPF (cBPF) interpreter inside the ker-
nel with a new instruction set architecture called ”extended
BPF” (eBPF) [21] [23] [22] [24] that brings far more flexibil-
ity and programmability aspects compared to its predecessor,
and new use cases along with it such as tracing [27] or more re-
cently KCM [17]. Along with the interpreter replacement, also
the just-in-time (JIT) compiler has been upgraded to translate
eBPF [25] for running programs with native performance.
With eBPF support that has been added to the kernel’s
cls bpf classifier [8] in the traffic control layer [8], tc
has gained a powerful member to program Linux’ data plane
with a tight integration to the kernel’s networking stack and
related tooling as well as different underlying programming
paradigms compared to its cBPF predecessor.
In this paper, we provide a basic overview of eBPF, its inter-
action with tc, and discuss some of the recent work that went
into eBPF that has been done by the Linux networking com-
munity. The intention of this paper is not to provide complete
coverage of all eBPF aspects, but rather tries to be a informa-
tional starting point for people interested in its architecture and
relation with tc.

Keywords
eBPF, cls bpf, tc, programmable datapath, Linux kernel

Introduction
The classic BPF or cBPF architecture has been part of the
Linux kernel for many years. Its most prominent user has
been PF PACKET sockets, where cBPF is used as a generic,
fast and safe solution to implement packet parsing at an early
point in the PF PACKET receive path. One of the primary
goals in relation to a safe execution was to not by any means
make the kernel’s operation unstable from injected untrusted
user programs.

cBPF’s architecture [18] is 32 bit and has two primary reg-
isters available A and X, a 16 words scratch space usually

referred to as M, and implicitly a program counter. Its de-
sign was heavily driven by the packet parsing use case. Reg-
ister A is the main register, also referred to as accumulator,
where most operations are performed such as alu, load, stores
or comparison operations for jumps. X was mostly used as
a temporary register, and is also used for relative loads of
packet contents. With cBPF, packet contents can only be read,
but not modified.

cBPF has eight different instruction classes, namely ld,
ldx, st, stx, alu, jmp, ret and misc. First ones de-
note load and store instructions involving A or X, respectively.
Next to alu and jump instructions, there are return instruc-
tions for terminating cBPF execution, and few miscellaneous
instruction to transfer contents of A and X.

cBPF supports only forward jumps, a maximum of 4096
instructions per cBPF program and the code is statically ver-
ified inside the kernel before execution. Overall, bpf asm
tool [5] counts 33 instructions, 11 addressing modes, and 16
Linux specific cBPF extensions.

The semantics of the cBPF program are defined by the
subsystem making use of it. Today, cBPF found many use
cases beyond PF PACKET sockets due to its generic, min-
imal nature and fast execution. seccomp BPF [15] parts
were added in 2012 for the purpose of having a safe and
fast way of system call filtering. In the networking domain,
cBPF can be used as socket filters for most protocols such
as TCP, UDP, netlink, etc, as a fanout demuxing facility
[14] [13] for PF PACKET sockets, for socket demuxing with
SO REUSEPORT [16], as load balancing in team driver [19],
for the here discussed tc subsystem as a classifier [6] and
action [20], and a couple of other miscellaneous users.

Programmability aspects changed radically when eBPF has
successively been introduced into the kernel since its first
merge and later follow up work since 2014.

eBPF Architecture
Like cBPF, eBPF can be regarded as a minimalistic ”virtual”
machine construct [21]. The machine it abstracts has only a
few registers, stack space, an implicit program counter and a
helper function concept that allows for side effects with the
rest of the kernel. It operates event driven on inputs (”con-
text”), which in case of tc is a skb, for example, traversing
ingress or egress direction the traffic control layer of a given
device.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

eBPF has 11 registers (R0 to R10) that are 64 bit wide
with 32 bit subregisters. The instruction set has a fixed in-
struction size of 64 bit, and can be regarded as a mixture of
cBPF, x86 64, arm64 and risc, designed to more closely
resemble underlying machine opcodes in order to ease eBPF
JIT compilation.

Some of the cBPF remains have been carried over into
eBPF to make in-kernel cBPF to eBPF migrations easier.
Generally, eBPF has a stable ABI for user space, similarly
as in cBPF case.

Internally, the Linux kernel ships with an eBPF interpreter
and JIT compiler for (currently) x86 64, s390, arm64.
There are a couple of other architectures such as ppc,
sparc, arm and mips that still have not converted their
cBPF JIT to an eBPF JIT yet, thus loading native eBPF code
is required to be run through the interpreter in these cases.
However, loading cBPF code through the available kernel in-
terfaces will, if it cannot be handled by the remaining cBPF
JITs for these architectures, be in-kernel migrated into eBPF
instructions and either JIT compiled through an eBPF JIT
back end or be handled by the interpreter. One such user,
for example, was seccomp BPF, that immediately had a bene-
fit of the eBPF migration as it could be JIT compiled as a side
effect of the eBPF introduction.

The eBPF instruction encoding consists of 8 bit code, 8
bit dst reg, 8 bit src reg, signed 16 bit offset and,
last but not least, signed 32 bit imm member. code holds
the actual instruction code, dst reg and src reg denote
register numbers (R0 to R10) to be used by the instruction,
offset depending on the instruction class can either be a
jump offset in case the related condition is evaluated as true, it
can be a relative stack buffer offset for load/stores of registers
into the stack, or in case of an xadd alu instruction, it can be
an increment offset. imm carries the immediate value.

eBPF comes with a couple of new instructions, such as
alu operations working on 64 bit, a signed shift operation,
load/store of double words, a generic move operation for reg-
isters and immediate values, operators for endianness conver-
sion, a call operation for invoking helper functions, and an
atomic add (xadd) instruction.

Similarly as with cBPF, a maximum of 4096 instructions
can be loaded into the kernel per program, and the passed in-
struction sequence is being statically verified in the kernel,
which is necessary for rejecting programs that could other-
wise destabilize the kernel, for example, through constructs
such as infinite loops, pointer or data leaks, invalid memory
accesses, etc. While cBPF allows only for forward jumps,
eBPF allows for forward and limited backward jumps as far
as a backward jump doesn’t generate a loop, and thus guaran-
tees that the program comes to halt.

eBPF has a couple of additional architectural concepts like
helper functions, maps, tail calls, object pinning. In the next
paragraphs, we are going to discuss each entity.

Helper Functions
Helper functions are a concept that lets eBPF programs con-
sult a core kernel defined set of function calls in order to re-
trieve/push data from/to the kernel. Available helper func-
tions may differ for each eBPF program type, for example,

eBPF programs attached to sockets are only allowed to call
into a subset of helpers as opposed to eBPF programs at-
tached to the traffic control layer. Encapsulation and decap-
sulation helpers for flow-based tunneling constitute an exam-
ple of functions that are only available to lower tc layers on
ingress and egress.

Each helper function is implemented with a commonly
shared function signature similar to system calls and is de-
fined as u64 foo(u64 r1, u64 r2, u64 r3, u64
r4, u64 r5) with a fixed calling convention that R0 con-
tains the return value, R1 to R5 function arguments, R6 to R9
registers are callee saved, and R10 acts as a read-only frame
pointer used for stack space load/stores. There are a cou-
ple of advantages with this approach: while cBPF overloaded
the load instruction in order to fetch data at an impossible
packet offset to invoke auxiliary helper functions, each cBPF
JIT needed to implement support for such a cBPF extension.
In case of eBPF, each newly added helper function will be JIT
compiled in a transparent and efficient way, meaning that the
JIT compiler only needs to emit a call instruction since the
register mapping is made in such a way that eBPF register as-
signments already match the underlying architecture’s calling
convention.

Mentioned function signature also allows the verifier to
perform type checks. struct bpf func proto is used
to hand all the necessary information that is needed to know
about the helper to the verifier, so the verifier can make sure
that expected types from the helper match with the current
contents of the eBPF program’s utilized registers. Argument
types can range from passing in any kind of value up to re-
stricted contents such as a pointer/size pair for the eBPF’s
stack buffer, which the helper should read from or write to. In
the latter case, the verifier can also perform additional checks,
for example, whether the buffer was initialized previously.

Maps
eBPF maps are another flexible entity which constitutes a part
of the eBPF architecture. Maps are an efficient key/value
store that reside in kernel space and are accessed through
file descriptors from user space. Maps can be shared be-
tween multiple eBPF programs, but also between an eBPF
program and user space. There are no limitations with re-
gards to sharing, for example, a map could be shared among
a tc related program and a tracing related one. Map back
ends are provided by the core kernel and are of generic or
specialized type (some specialized maps such as [28] may
be only used for a given subsystem, though). Generic maps
currently are available in form of an array or a hash table,
both in per-CPU but also non-per-CPU flavours. Access to
maps is realized from an eBPF program through previously
described helper functions. From user space, maps can be
managed through the bpf(2) system call. Creation of maps
can only be done from user space via bpf(2). This means
that in case an eBPF program needs to populate one of the
registers with a reference to the map in order to perform
a map helper function call, it needs to encode the file de-
scriptor value into the instruction, for example, helper macro
BPF LD MAP FD(BPF REG 1, fd) would be such a case.
The kernel recognizes this special src reg case, can lookup

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

the file descriptor from the file descriptor table to retrieve the
actual eBPF map, and rewrite the instruction internally.

Object Pinning
eBPF maps and programs act as a kernel resource and can
only be accessed through file descriptors, backed by anony-
mous inodes in the kernel. Advantages, but also a number
of disadvantages come along with them: user space applica-
tions can make use of most file descriptor related APIs, file
descriptor passing for Unix domain sockets work transpar-
ently, etc, but at the same time, file descriptors are limited
to a processes’ lifetime, which makes things like map sharing
rather cumbersome. Thus it brings a number of complications
for certain use cases such as tc, where tc sets up and loads
the program into the kernel and terminates itself eventually.
With that, also access to maps are unavailable from user space
side, where it would otherwise have been useful, for example,
when third party applications may wish to monitor or update
map contents during eBPF program runtime. There were a
couple of ideas on how to keep such file descriptors alive, one
being to reuse fuse that would act as a proxy for tc. Thus,
file descriptors are owned by the fuse implementation and
tools like tc can fetch related file descriptors through Unix
domain sockets.

However, this as well brings a number of issues. Deploy-
ments then additionally depend on fuse to be installed and
need to run an additional daemon. Large scale deployments
that try to maintain a minimalistic user space for saving re-
sources might be unwilling to accept such additional depen-
dencies. To resolve this, a minimal kernel space file system
has been implemented [4] where eBPF map and programs can
be pinned, a process we call object pinning. The bpf(2)
system call has been extended with two new commands that
can pin or retrieve a previously pinned object. For instance,
tools like tc make use of this new facility [9] for shar-
ing maps on ingress and egress. The eBPF-related file sys-
tem keeps an instance per mount namespace, supports bind
mounts, hard links, etc. It integrates seamlessly when spawn-
ing a new network namespace through ip-netns, and de-
pending on use cases, different shared subtree semantics can
be utilized.

Tail Calls
Another concept that can be used with eBPF is called tail calls
[26]. Tail calls can be seen as a mechanism that allows one
eBPF program to call another, without returning back to the
old program. Such a call has minimal overhead as unlike
function calls, it is implemented as a long jump, reusing the
same stack frame. Such programs are verified independently
of each other, thus for transferring state, either per-CPU maps
as scratch buffers or skb fields such as cb area must be used.
Only programs of the same type can be tail called, and they
also need to match in terms of JIT compilation, thus either
JIT compiled or only interpreted programs can be invoked,
but not mixed together.

There are two components involved for realizing tail calls:
the first part needs to setup a specialized map called program
array that can be populated by user space with key/values
where values are the file descriptors of the tail called eBPF

programs, the second part is a bpf tail call() helper
where the context, a reference to the program array and the
lookup key is passed to. The kernel translates this helper call
directly into a specialized eBPF instruction. Such a program
array is write-only from user space side.

The kernel looks up the related eBPF program from the
passed file descriptor and atomically replaces program point-
ers at the map slot. When no map entry has been found at
the provided key, the kernel will just ”fall through” and con-
tinue execution of the old program with the instructions fol-
lowing the bpf tail call(). Tail calls are a powerful
utility, for example, parsing network headers could be struc-
tured through tail calls. During runtime, functionality can be
added or replaced atomically, and thus altering execution be-
haviour.

Security
eBPF has a couple of mitigation techniques to pre-
vent intentional or unintentional corruption of program
images through kernel bugs, that do not necessarily
need to be BPF related. For architectures supporting
CONFG DEBUG SET MODULE RONX, the kernel will lock
eBPF interpreter images as read-only [2]. When JIT com-
piled, the kernel also locks the generated executable im-
ages as read-only and randomizes their start address to make
guessing harder. The gaps in the images are filled with trap
instructions (for example, on x86 64 it is filled with int3
opcodes) for catching such jump probes. eBPF will soon
also have a constant blinding facility for unprivileged pro-
grams. For unprivileged programs, the verifier also imposes
restrictions on helper functions that can be used, restrictions
on pointers, etc, to make sure that no data leakage can occur.

LLVM
One important aspect of eBPF is how programs can be writ-
ten. While cBPF has only a few options available such as
the libpcap’s cBPF compiler, bpf asm, or other means
of hand crafting such programs, eBPF eases usage signif-
icantly by the possibility of implementing eBPF programs
from higher level languages such as C (P4 language front
ends exist as well).
llvm has an eBPF back end for emitting ELF files that

contain eBPF instructions, front ends like clang can be
used to craft programs. Compiling eBPF with clang is
fairly easy by invoking clang -O2 -target bpf -o
bpf prog.o -c bpf prog.c. Often quite useful is
also clang’s option to output assembly through clang
-O2 -target bpf -o - -S -c bpf prog.c or
tools like readelf to dump and analyze ELF sections
and relocations. A typical workflow is to implement eBPF
programs in C, to compile them with clang and pass to
eBPF loaders such as tc that interact with classifiers like
cls bpf.

cls bpf and eBPF
cls bpf started out in 2013 [6] as a cBPF-based classi-
fier, programmable through bpf asm, libpcap/tcpdump
or any other cBPF bytecode generator. The bytcode is then

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

passed through the tc front end, which mainly sets up the
netlink message to push the code down into cls bpf.

Some time ago act bpf [20] followed, which as any ac-
tion in tc, can be attached to classifiers. act bpf support-
ing cBPF bytecode as well has effectively the same func-
tionality as cls bpf with the only difference of their op-
codes they return. While cls bpf can return any tc classid
(major/minor), act bpf in contrast, returns a tc action
opcode.

A downside at the introduction of act bpf however was,
that while being tied to cBPF only, the skb could not be man-
gled and would thus require further processing in the action
pipeline by invoking tc actions such as act pedit at the
cost of additional performance penalty per packet.

eBPF support for cls bpf and act bpf
got added shortly later with eBPF program
types BPF PROG TYPE SCHED CLS [8] and
BPF PROG TYPE SCHED ACT [7], respectively. The
fast path for both types run under RCU and their main task
is nothing more than just to invoke BPF PROG RUN(),
which resolves to (*filter->bpf func)(ctx,
filter->insnsi), where the skb is to be processed
as the BPF input context with either the eBPF interpreter
(bpf prog run()) selected as a function dispatch or the
generated JIT image by one of the architecture provided JIT
compilers.

Functions like cls bpf classify() are unaware of
the underlying BPF flavour, so skbs pass through the same
path for cBPF as well as eBPF classifier. One of the advan-
tages of cls bpf over various other tc classifiers is that it
allows for efficient, non-linear classification (and integrated
actions), meaning the BPF program can be tailored, so that
a single parsing pass is enough to process skbs of different
types. Historically, tc allows for multiple classifiers to be
attached, and when a lack of match occurs, the next classifier
in the chain is executed. It becomes inefficient when parts of
the packet have to be re-parsed in the next classifiers over and
over again. With cls bpf this can be avoided easily with
a single eBPF program, or in a eBPF tail call program con-
struct, which allows for atomic replacements of parts of the
packet parser. There, the program, based on the classification
(or action) outcome, can return different classids or opcodes.

Working Modes
cls bpf has two working modes for dealing with actions.
Originally, tcf exts exec() has been invoked after clas-
sification, but as eBPF is more powerful than just doing clas-
sification, i.e. it can mangle packet contents, update check-
sums, etc by itself already, it has been decided to add a di-
rect action (da) mode [3], which is a recommended fast path
when working with cls bpf.

In this mode, cls bpf performs actions on the skb, and
just returns a tc opcode, which eventually allows for having
a compact, lightweight image for efficient skb processing,
without needing to traverse multiple layers of indirection and
list handling when using the full tc action engine. For eBPF,
the classid can be stored in skb->tc classid, and the
action opcode is being returned. The latter also works well
for simple cases with cBPF like drop actions.

Nevertheless, cls bpf still allows for the administrator
to use multiple classifiers in mixed modes (da and non-da)
if the use case makes it necessary. We recommend, however,
to make the fast path as compact as possible, thus for high
performance workloads, a single tc eBPF cls bpf classi-
fier in da mode should be sufficient in the vast majority of
cases.

Features
With eBPF there are number of possibilities to use in
cls bpf with regards to the context itself and provided
helper functions. They are building blocks that can be tai-
lored together for a given, specific use case.

For the context (skb here is of type struct
sk buff), cls bpf allows reads and writes to

skb->mark, skb->priority, skb->tc index,
skb->cb[5], skb->tc classid members, it
allows reads to skb->len, skb->pkt type,
skb->queue mapping, skb->protocol,
skb->vlan tci, skb->vlan proto,
skb->vlan present, skb->ifindex (translates
to netdev’s ifindex) and skb->hash.

There are a number of helper functions available to be used
from cls bpf program types. These include among oth-
ers, eBPF map access (lookup, update, deletion), invoking
of eBPF tail calls, storing and loading (multi-)bytes into the
skb for parsing and packet mangling, L3 and L4 checksum
fix up helpers, encapsulation and decapsulation support. The
latter provides helpers for vlan, but also supports the tunnel
key infrastructure, where eBPF acts as a front end to feed
tunnel related meta data on transmission for back end imple-
mentations like vxlan, geneve or gre. Similarly, the meta data
retrieved on receive is stored in the tunnel key and can be read
out from eBPF again. Such vxlan or geneve flow-based tun-
neling back end devices operate in collect metadata mode for
this purpose.
skbs can also be redirected from cls bpf either as egress

through dev queue xmit(), or back into the ingress path
from another device via dev forward skb(). There are
currently two possibilities for redirection, either as a cloned
skb during eBPF program runtime, or as a faster variant,
where the skb doesn’t need to be cloned. The latter re-
quires cls bpf to be run in da mode, where the return
code is TC ACT REDIRECT that is supported by qdiscs like
sch clsact [12] on ingress and egress path. Here, the pro-
gram fills a per-CPU scratch buffer with necessary redirec-
tion information during eBPF program runtime, and on return
with the related opcode, the kernel will take care of the redi-
rection through skb do redirect(). This facility acts as
a performance optimization, so that the skb can be efficiently
forwarded.

For debugging purposes, there is a
bpf trace printk() helper also available for cls bpf
that allows dumping printk()-like messages into the trace
pipe, which can be read through commands like tc exec
bpf dbg. This turns out to be a useful facility for writing
and debugging eBPF programs despite its limitations as a
helper function: from five arguments that can be passed, the
first two are inevitably format string related. Furthermore,

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

clang needs to emit code that copies the given format string
into the eBPF stack buffer first.

There are a couple of other helper functions avail-
able, for example, to read out the skb’s cgroup clas-
sid (net cls cgroup), to read the dst’s routing realm
(dst->tclassid), to fetch a random number (f.e. for
sampling purposes), to retrieve the current CPU the skb
is processed on, or to read out the time in nanoseconds
(ktime t).
cls bpf can be attached to a couple of invocation points

related to the traffic control subsystem. They can be catego-
rized into three different hook types: the ingress hook, the
recently introduced egress hook and the classification hook
inside classful qdiscs on egress. The first two can be con-
figured through sch clsact [12] qdisc (or sch ingress
for the ingress-only part) and are invoked lockless un-
der RCU context. The egress hook runs centrally from
dev queue xmit() before fetching the transmit queue

from the device.

Front End
The tc cls bpf iproute2 front end [10] [11] [9] does quite
a bit of work in the background before pushing necessary
data for cls bpf into the kernel over netlink. It contains a
common ELF loader back end for f bpf (classifier), m bpf
(action), and e bpf (exec) parts, so that commonly used
code can be shared. When compiling an eBPF program
with clang, it generates an object file in ELF format that
is passed to tc for loading into the kernel. It is effectively a
container for all the necessary data that tc needs to extract,
relocate and load for getting the eBPF program hooked up in
cls bpf.

On startup, tc checks and if necessary mounts the bpf
fs for object pinning by default to /sys/fs/bpf, loads
and generates a hash table for pinning configuration in case
maps are to be shared other than on a per-object or global
scope.

After that, tc walks ELF sections of the object file. There
are a couple of reserved section names, namely maps for
eBPF map specifications (e.g. map type, key and value size,
maximum elements, pinning, etc) and license for the li-
cence string, specified similarly as in Linux kernel modules.
Default entry section names are classifier and action
for cls bpf and act bpf, respectively. tc fetches all
ancillary sections first, including the ELF’s symbol table
.symtab and string table .strtab. Since everything in
eBPF is addressed through file descriptors from user space,
the tc front end first needs to generate the maps and based
on the ELF’s relocation entries, it inserts the file descriptor
number into the related instructions as immediate value.

Depending on the pinning for the map, tc either fetches
a map file descriptor from the bpf fs at the target lo-
cation, or it generates a new map that was previously un-
pinned, and if requested, pins it. There are three different
kind of scopes for sharing maps. They can be shared in a
global namespace /sys/fs/bpf/tc/globals, in a ob-
ject namespace /sys/fs/bpf/tc/<obj-sha>, or at a
completely customized location. It allows eBPF maps to be
shared between various cls bpf instances. There are no

restrictions with regards to sharing generic maps such as ar-
rays or hash tables, even eBPF maps used by tracing eBPF
programs (kprobes) can be shared with eBPF maps used
by cls bpf or act bpf. When pinning, tc consults the
ELF’s symbol and string table to fetch a map name.

After having maps generated, tc looks up sections with
program code, performs mentioned relocations with the gen-
erated map file descriptors and loads the program code into
the kernel. When tail calls are used and tail called subsections
are present in the ELF file, tc loads them into the kernel as
well. They can have arbitrary nesting from a tc loader per-
spective, kernel runtime nesting is limited, of course. Also,
the program’s related program array for the eBPF tail calls
can be pinned, which allows for later modifications from
user space on the program’s runtime behaviour. tc exec
bpf has a graft option that will take care of replacing
such sections during runtime. Grafting effectively undergoes
the same procedure as loading a cls bpf classifier initially,
only that the resulting file descriptor is not pushed into the
kernel through netlink, but rather through the corresponding
map.
tc’s cls bpf front end also allows to pass generated map

file descriptors through execvpe() over the environment
to a new spawned shell, so programs can use it globally like
stdin, stdout and stderr, or the file descriptor set can
be passed via Unix domain sockets to another process. In
both cases the cloned file descriptors lifetime is still tighly
coupled with the process’ lifetime. Retrieving new file de-
scriptors through the bpf fs is the most flexible and pre-
ferred way [9], also for third party user space applications
managing eBPF map contents.

Last but not least, the tc front end provides command line
access for dumping the trace pipe via tc exec bpf dbg,
where it automatically locates the mount point of trace
fs.

Workflow
A typical workflow example for loading cls bpf classifiers
in da mode is straight forward. The generated object file
from the foo.c program is called foo.o and contains two
program sections p1 and p2. In the example, the foo.c file
is first compiled with clang, the kernel eBPF JIT compiler
enabled, then a clsact qdisc is added to device em1, the
object file loaded as classifiers on ingress and egress path of
em1, and eventually deleted again:

$ clang -O2 -target bpf -o foo.o -c foo.c

sysctl -w net.core.bpf_jit_enable=1

tc qdisc add dev em1 clsact
tc qdisc show dev em1
[...]
qdisc clsact ffff: parent ffff:fff1

tc filter add dev em1 ingress bpf da \
obj foo.o sec p1

tc filter add dev em1 egress bpf da \
obj foo.o sec p2

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

tc filter show dev em1 ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle

0x1 foo.o:[p1] direct-action

tc filter show dev em1 egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle

0x1 foo.o:[p2] direct-action

tc filter del dev em1 ingress pref 49152
tc filter del dev em1 egress pref 49152

Programming
The iproute2 repository ships with a couple of ”getting
started” example files under examples/bpf/ written in
restricted C for running eBPF 1. Implementing such classi-
fiers is fairly straight forward. In contrast to a traditional user
space C program, eBPF programs are restricted in a couple
of ways. Every such classifier needs to be placed into ELF
sections. Therefore, an object file can carry one or multiple
eBPF classifiers.

They can share code among each other in two ways, either
through always inline annotated functions, or com-
monly used tail call sections. The former is necessary as
clang needs to compile the whole, flat program into a series
of eBPF instructions residing self-contained in their related
section.

Shared libraries or eBPF functions as relocation entries are
not available. It is not possible for an eBPF loader like tc to
”stitch” them back together as a single flat array of eBPF in-
structions without redoing the job of a compiler. Thus, load-
ers have a ”contract” with clang which stipulates that the
generated ELF file provides all necessary eBPF instructions
contained in a given section. The only allowed relocation en-
tries are in relation to maps, where file descriptors need to be
set up first.

eBPF programs have a very limited stack space of 512
bytes, which needs to be taken into careful consideration
when implementing them in C. Global variables as in typ-
ical C context are not possible, only eBPF maps (in tc it
is struct bpf elf map) need to be defined in their own
ELF section and can be referred by reference in program sec-
tions. If global ”variables” are needed, they can be realized,
for example, as an eBPF per-CPU or non-per-CPU array map
with a single entry, and referenced from various sections such
as entry point sections, but also tail called sections.

Another restriction is that dynamic looping is not allowed
in an eBPF program. Loops with compile-time known con-
stant bounds can be used and unrolled with clang, though.
Loops where the bounds cannot be determined during com-
pilation time will get rejected by the verifier, since such pro-
grams are impossible to statically verify for guaranteed ter-
mination from all control flow paths.

1https://git.kernel.org/cgit/linux/kernel/
git/shemminger/iproute2.git/tree/examples/bpf

Conclusion and Future Work
cls bpf is a flexible and efficient classifier (as well as ac-
tion) for the tc family. It allows for a high degree of data path
programmability for a variety of different use cases involving
parsing, lookup or updating (f.e. map state), and mangling
network packets. When compiled by an underlying architec-
ture’s eBPF JIT back end, programs execute with native per-
formance. Generally, eBPF has been designed to operate at
environments that require high performance and flexibility at
the same time.

While some of the internal details may appear complex,
writing eBPF programs for cls bpf is perhaps more com-
parable to some degree with user space application program-
ming when certain constraints are taken into account. Han-
dling cls bpf front end from tc command line side in-
volves only a few subcommands and is designed for ease of
use.

The cls bpf code, its tc front end, eBPF in general and
its clang compiler back end are all open source, included in
their related upstream projects, maintained and further devel-
oped by the upstream community.

There are a number of future enhancements and ideas still
discussed and evaluated. Besides others, these include some
form of offloading of cls bpf into programmable NICs.
The checkpoint restore in user space project (CRIU) is able to
handle cBPF already, but eBPF support still needs to be im-
plemented, which would be useful for container migrations.

References
[1] Begel, A.; Mccanne, S.; and Graham, S. L. 1999. Bpf+:

Exploiting global data-flow optimization in a generalized
packet filter architecture. In In SIGCOMM, 123–134.

[2] Borkmann, D., and Sowa, H. F. 2014. net: bpf: make
ebpf interpreter images read-only. Linux kernel, commit
60a3b2253c41.

[3] Borkmann, D., and Starovoitov, A. 2015. cls bpf:
introduce integrated actions. Linux kernel, commit
045efa82ff56.

[4] Borkmann, D.; Starovoitov, A.; and Sowa, H. F. 2015.
bpf: add support for persistent maps/progs. Linux kernel,
commit b2197755b263.

[5] Borkmann, D. 2013a. filter: bpf asm: add minimal bpf
asm tool. Linux kernel, commit 3f356385e8a4.

[6] Borkmann, D. 2013b. net: sched: cls bpf: add bpf-based
classifier. Linux kernel, commit 7d1d65cb84e1.

[7] Borkmann, D. 2015a. act bpf: add initial ebpf support
for actions. Linux kernel, commit a8cb5f556b56.

[8] Borkmann, D. 2015b. cls bpf: add initial ebpf sup-
port for programmable classifiers. Linux kernel, commit
e2e9b6541dd4.

[9] Borkmann, D. 2015c. {f,m} bpf: allow for sharing maps.
iproute2, commit 32e93fb7f66d.

[10] Borkmann, D. 2015d. tc: add ebpf support to f bpf.
iproute2, commit 11c39b5e98a1.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

[11] Borkmann, D. 2015e. tc, bpf: finalize ebpf support for
cls and act front-end. iproute2, commit 6256f8c9e45f.

[12] Borkmann, D. 2016. net, sched: add clsact qdisc. Linux
kernel, commit 1f211a1b929c.

[13] de Bruijn, W. 2015a. packet: add classic bpf fanout
mode. Linux kernel, commit 47dceb8ecdc1.

[14] de Bruijn, W. 2015b. packet: add extended bpf fanout
mode. Linux kernel, commit f2e520956a1a.

[15] Drewry, W. 2012. seccomp: add system call filtering
using bpf. Linux kernel, commit e2cfabdfd075.

[16] Gallek, C. 2016. soreuseport: setsockopt
so attach reuseport [ce]bpf. Linux kernel, commit
538950a1b752.

[17] Herbert, T. 2016. kcm: Kernel connection multiplexor
module. Linux kernel, commit ab7ac4eb9832.

[18] Mccanne, S., and Jacobson, V. 1992. The bsd packet fil-
ter: A new architecture for user-level packet capture. 259–
269.

[19] Pirko, J. 2012. team: add loadbalance mode. Linux
kernel, commit 01d7f30a9f96.

[20] Pirko, J. 2015. tc: add bpf based action. Linux kernel,
commit d23b8ad8ab23.

[21] Starovoitov, A., and Borkmann, D. 2014. net: filter:
rework/optimize internal bpf interpreter’s instruction set.
Linux kernel, commit bd4cf0ed331a.

[22] Starovoitov, A. 2014a. bpf: expand bpf syscall with pro-
gram load/unload. Linux kernel, commit 09756af46893.

[23] Starovoitov, A. 2014b. bpf: introduce bpf syscall and
maps. Linux kernel, commit 99c55f7d47c0.

[24] Starovoitov, A. 2014c. bpf: verifier (add verifier core).
Linux kernel, commit 17a5267067f3.

[25] Starovoitov, A. 2014d. net: filter: x86: internal bpf jit.
Linux kernel, commit 622582786c9e.

[26] Starovoitov, A. 2015a. bpf: allow bpf programs
to tail-call other bpf programs. Linux kernel, commit
04fd61ab36ec.

[27] Starovoitov, A. 2015b. tracing, perf: Implement bpf
programs attached to kprobes. Linux kernel, commit
2541517c32be.

[28] Starovoitov, A. 2016. bpf: introduce
bpf map type stack trace. Linux kernel, commit
d5a3b1f69186.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

