
Suricata IDPS and its interaction with Linux kernel

Eric Leblond, Giuseppe Longo
Stamus Networks

France, Italy
eleblond@stamus-networks.com glongo@stamus-networks.com

Abstract

Suricata is an open source network intrusion detection and pre-
vention system. It analyzes the traffic content against a set of
signatures to discover know attacks and also journalize proto-
col information.
One particularity of IDS systems is that they need to analyze
the traffic as it is seen by the target. For example, the TCP
streaming reconstruction has to be done the same way it is done
on the target operating systems and for this reason it can’t rely
on its host operating system to do it.
Suricata interacts in a number of ways with the underlying
operating system to capture network traffic. Under Linux
it supports a wide range of capture methods ranging from
AF PACKET to NFQUEUE or NFLOG.
The purpose of this paper is to describe how some different
performance challenges and interactions have been addressed
with the Linux kernel and to show what works are in progress
to increase performance. We will also explain in detail which
are the current limitation, and some ideas that looked good at
first, but wrong at the end. Finally, we will cover some possible
evolutions like the offloading of some know good traffic.

Keywords
Suricata, Linux, Kernel, AF-PACKET, NFQUEUE, NFLOG

Introduction
Suricata [3] is an open source network intrusion detection and
prevention system. It analyzes the traffic content against a
set of signatures to discover know attacks and also journalize
protocol information. A signature is a list of filters that apply
to the traffic. For instance, Suricata can search a string in the
content of a TCP stream or in the user agent seen in HTTP
requests.

IDS specific constraints
IDS and evasion attacks
One particularity of IDS systems is that they need to analyze
the traffic as it is seen by the target. If they don’t do so then
they may analyse a different traffic. This can lead to missed
attacks (false negative) or to trigger alerts for benign traffic
(false positive).

For example, the TCP streaming reconstruction has to be
done the same way it is done on the target operating systems.

All reconstructions that are handled differently by operating
system due to RFC incompletion or bad implementation must
be taken into account by the IDS. If streaming is not done this
way, then attackers can abuse this interpretation mistake to
get this attack unnoticed. For instance, if they attack a Win-
dows operating system seen as a Linux by the IDS, they just
need to use a TCP segmentation scheme that is done differ-
ently on Linux and on Windows so the IDS will see a content
that is not the one received by the target. This kind of tech-
nique is called evasion [4] and it is available in attack tools
just as Metasploit [2]. For this reason it can’t rely on the op-
erating system it is running on to do it.

Streaming in IDS and IPS mode
To be accurate, Suricata wants to analyze the traffic as it is
seen by the host. In the case of TCP traffic, it is analyzing
the data once it has been acked. This ensures that the host
has received the data Suricata is going to analyse. This also
permit to do the reconstruction based on the input of the target
(like removing from the stream duplicate fragments that have
not been acked).

But this approach does not work in Intrusion Prevention
System (or IPS) mode because the data have reached the host
that we protect before they get analyzed. And if, for example,
we have an attack fitting into one single datagram then the
targeted host has been compromised.

So another approach is necessary in IPS mode. When Suri-
cata receives a packet, it triggers the reassembly process it-
self. Doing so it can analyze the data before they are sent to
the target. With this approach, if the detection engine decides
a drop is required, the packet containing the data itself can be
dropped.

Doing the reassembly in Suricata has some consequences
on the traffic. In some case, it may be necessary to modify
packets. For example, in the case of overlapping segments
some portion of the data in the packet may have to be over-
written.

So in IPS mode, Suricata is not only dropping packets but
can also modify their content.

Suricata and performance
All signatures needs to be inspected at the difference of a fire-
wall because the IDS needs to find if any signature is match-
ing and multiple matches for a single packet are possible. Sig-

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

natures can be costly to evaluate as they can involve regular
expression and/or Lua scripting. Current signatures sets con-
tain between 15000 and 30000 signatures. Thus an iterative
evaluation is not possible if the IDS needs to analyse traffic in
real time. Some optimisations are needed to make high speed
matching possible. Most used techniques is a combination of
pre filtering by IP parameters and multi pattern matching on
content filter (using mainly Aho-Corasick algorithm [1]).

Even with these optimisation the bandwidth per core is lim-
ited and a single core can not process more than 1 Gbps. Real
life measurement give a limit of around 300 to 400 Mbps per
core.

Running IDS on 10 Gbps network is frequent so IDSes
needs to use some load balancing techniques to be able to
scale.

Suricata and Linux kernel
Raw packet capture
Suricata principal capture method is AF PACKET descrip-
tion. It uses the raw socket to capture a copy of the network
traffic sent by a switch using port mirroring or by a tap device.

Suricata is using AF PACKET fanout mode to do the load
balancing needed to reach higher bandwidth. AF PACKET
fanout is doing a load balancing of one interface traffic over
multiple sockets. Suricata is thus attaching multiple cap-
ture threads to the interfaces. Most common and fastest
threads organization for Suricata AF PACKET capture mode
is shown in figure 2.

Figure 1: Suricata workers running mode

All capture threads runs all functional tasks in chains. Each
thread is pinned to a core and system is tuned to attach the
core to a RSS queue of the network card.

The load balancing has to be done with respect to the flow
as spreading the packets for one flow other different sockets
will result in the streaming engine seeing out of order packets
for a single stream resulting in incapacity to get the stream
information reconstruction correctly done.

So one problem of this running mode is that one single in-
tensive flow is able to fill in the buffer on one receiver thread.
Basically any flow which speed is superior to one single core

treatment capacity will saturate the core and cause massive
packet loss.

The rollover option has been added by Willem de Bruijn to
AF PACKET to address this issue. When the ring buffer of
one socket is full the packets that should have given to that
socket are given to the next socket with free space. Using this
option in Suricata was straightforward and tests have been
made. They have shown some interesting results.

Figure 2: Accuracy test of Suricata using rollover mode
(graph by Victor Julien)

If the drop rate is lower when using the rollover option, the
number of alerts is lower when using rollover option. This
means a important amount of traffic has not correctly being
analyzed when rollover option has been used.

Explanation it the sending the traffic to another socket
when one is full is useless for Suricata as it is causing mas-
sive out of order packets. This confused the streaming engine
and result in an important number of flow to be non correctly
analyzed.

Interaction with Netfilter
NFQUEUE In Intrusion Prevention mode, Suricata needs
to be able to drop the packets if they contains something that
is referenced as a malicious traffic. To do so, Suricata needs
to use a different capture method.

The most used IPS capture method is Netfiter queue. It
allows Suricata to perform action like DROP or ACCEPT on
the packets.

The firewall ruleset needs to be updated. A new rule has
to be added to send the traffic to the Suricata connected to a
queue for a decision.

The following steps explains how NFQUEUE works with
Suricata in IPS mode:
• Incoming packet matched by a rule is sent to Suricata

through nfnetlink
• Suricata receives the packet and issues a verdict depending

on our ruleset
• The packet is either transmitted or rejected by kernel

On performance side, NFQUEUE number of packets per
second on a single queue is limited due to the nature of

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

nfnetlink communication. Batching verdict can help but with-
out an efficient improvement.

NFLOG This is Netfilter logging via netlink socket. This
capture method is similar to NFQUEUE but it only sends a
copy of packet without issuing a verdict.

It’s used to log packet by the kernel packet filter and pass
it via userspace software. Suricata supports the NFLOG
method to provide an IDS solution linked with Netfilter log-
ging.

Mixed Mode
It’s a capability of Suricata to capture packets from differ-
ent sources and handle them differently depending on the
source. For example, it’s possible to setup Suricata as IPDS,
as Prevention and Detection System, using NFQUEUE and
NFLOG.

As seen in previously, the algorithm used for stream re-
assembly are different in IPS and IDS modes for security rea-
son. So Suricata needs to be able to handle packets from
NFQUEUE and NFLOG differently. So the key point of
mixed mode is that Suricata decide on a per packet basis if
it has to be inspected (IDS) or blocked (IPS).

One usage of mixed mode is the following scenario. Let’s
suppose we want manage a firewall protecting a public web-
server. We would like to deploy some IDS/IPS ability to en-
hance the security of this server. The traffic on port 80 is too
critical to be blocked so we would like to have only IDS on
it. For the rest of the ports we can safely run IPS on them
and block traffic if necessary. A classical setup would have
required to run many Suricata instances with different con-
figuration files. Instead in mixed mode, we can act as IDS
to port 80 and block the rest of traffic which is less business
sensitive. This means Suricata will act as IPS on other ports
than 80.

To do so we just need to setup Suricata in mixed mode and
have two different Netfilter filtering rules to send port 80 to
NFLOG and send the rest to NFQUEUE.

Suricata and offloading
Stream reassembly depth
In most cases attack is done at start of TCP session. For some
protocols generation of requests prior to attack is uneasy and
is at least not common. For that reason, Suricata is recon-
structing the stream till a certain configurable limit called
stream reassembly depth. All packets of a flow after that limit
are not sent to streaming engine. This result in lessen the load
on the IDS. But this is not perfect as some work is still done
inside Suricata for these packets.

Interest of offloading
The purpose of the Offloading API is to boost the perfor-
mance during the packet acquisition, by ignoring some kind
of intensive traffic. First objective is to completely ignore
packets of a flow once stream reassembly depth is reached.
Second objective is to disable almost instantly single inten-
sive flow like Netflix. To do so we must ignore them as soon
as we have identified them.

Implementation of framework
The API development consists in the implementation of a
method that is called when Suricata decides to activate of-
floading.

Since Suricata works with several capture methods, the of-
floading method must be implemented in each of it, or at least,
in the capture methods that we want to make able to offload
traffic.

The offload can be applied in a general context, offloading
all kind of traffic after that a TCP session is reconstructed
enough, otherwise it’s possible to offload a specific kind of
traffic with the usage of signatures.

Use it with NFQ
The usage of offloading with NFQ, requires a Netfilter ruleset
which will specify the packet’s verdict.

t a b l e i p f i l t e r {
chain f o r w a r d {

type f i l t e r hook f o r w a r d p r i o r i t y 0 ;
u s u a l r u l e s e t

}

chain i p s {
type f i l t e r hook f o r w a r d p r i o r i t y 1 0 ;
meta mark s e t c t mark
mark 0 x00000001 a cc ep t
queue num 0

}

chain connmark save {
type f i l t e r hook f o r w a r d p r i o r i t y 2 0 ;
c t mark s e t mark

}
}

The purpose of the ruleset is to send all unmarked packets
to nfqueue. This is done by using a dedicated chain coming
after the firewall chain (hence we get all packets accepted by
firewall policy). If they have a mark, we accept them, if not
kernel is sending them to Suricata through nfqueue.

Inside Suricata, the offloading function is really simple. It
consists in setting a dedicated offload mark to the packets:

s t a t i c vo id NFQOff loadCal lback (P a c k e t ∗p)
{

p−>n f q v . mark = (n f q c o n f i g . o f f l o a d m a r k
& n f q c o n f i g . o f f l o a d m a s k)
| (p−>n f q v . mark

& ˜ n f q c o n f i g . o f f l o a d m a s k) ;
p−>f l a g s |= PKT MARK MODIFIED ;

r e t u r n ;
}

To activate the Offloading API, we can :

• Update Suricata configuration by enabling the
stream.offloading setting to yes: in this case Suricata
will trigger the callback
when the stream.reassembly.depth setting is reached.

• Add the new ’offload’ keyword in a signature, for example:

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

a l e r t h t tp any any −> any any (c o n t e n t : ” n e t f l i x . com” ;
h t t p h o s t ; o f f l o a d ; s i d : 1 2 3 4 ; rev : 1 ;)

When this rule is matched, Suricata will trigger the offload-
ing function.

Tests have shown that using an intensive flow generated
by iperf, we manage to trigger the offloading fast enough to
almost get back to Netfilter raw performances.

Conclusion
Suricata has some constraints which are different than what
is usually seen in the firewall and router world. Being CPU
bound, it relies heavily on load balancing and due to current
architecture, it can suffer from an intensive and long flow.
Offloading API is a way to address that by shunting traffic
not inspected by Suricata at the earliest stage. Current imple-
mentation of the offloading API is only done for NFQUEUE.
We are planning to extend it to other capture methods such as
AF PACKET.

References
[1] Aho, A. V., and Corasick, M. J. 1975. Efficient string

matching: An aid to bibliographic search. Commun. ACM
18(6):333–340.

[2] Moore, H. D. Metasploit penetration testing software.
http://www.metasploit.com.

[3] Open Information Security Foundation. Suricata.
http://www.suricata-ids.org.

[4] Ptacek, T., and Newsham, T. 1998. Insertion, evasion,
and denial of service: Eluding network intrusion detection.
http://insecure.org/stf/secnet ids/secnet ids.html.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

