
The CLASHoFIRES: Who's Got Your Back?

Jamal Hadi Salim, Lucas Bates
Mojatatu Networks

Ottawa, Ont., Canada

hadi@mojatatu.com, lucasb@mojatatu.com

Abstract
This paper takes a performance perspective look at three
classifiers that are part of the Linux Traffic Control (TC)
Classifier-Action(CA) subsystem architecture. Two of the
classifiers, namely (e)bpf and flower were recently integrated into
the kernel. A blackbox performance comparison is made between
the two new classifiers and an existing classifier known as u32.

Keywords
Linux, tc, classifiers, filters, actions, qdisc, packet processing,
Software Defined Networking, iproute2, kernel, tc, u32, flower,
ebpf, bpf, bpf-jit.

 Introduction
The tc subsystem[1] provides powerful policy definable
packet-processing capabilities in the Linux kernel.
The term tc will interchange-ably be used in the document
to refer to both the kernel subsystem as well as the popular
tc utility (used to configure the tc kernel subsystem).
A CA(Classifier-Action) subset of the tc subsystem is
attached to a qdisc1. In this paper we focus only on a small
subset of the Linux CA tc subsystem, the “C” part(packet
classifiers). The qdiscs essentially are holders of classifiers
which in turn hold filters at the two per-port hooks. It
should be noted that while those are the only two anchors
currently in use, it is feasible to attach the CA subsystem
via a qdisc on many other hooks within the network stack;
as an example of a recent addition refer to [2].

To provide context, we repeat some of the applicable
content described in [1].
There are two guiding principles for the classifier
architecture in tc:

1. It is not possible to have a universal classifier
because underlying technologies are constantly
changing.

2. Sometimes we need more than one classifier type,
each with different capabilities, to properly match
a given policy signature.

1 The root qdisc is anchored at the egress point of a port
whereas the ingress qdisc is anchored on the ingress side.
Note: on the egress side a CA graph can be attached at
different qdisc hierarchies and not just the root qdisc.

The CA design choice has fostered innovation2 which has
provided the opportunity to introduce two new classifiers,
which we talk about in this paper, namely: (e)bpf[3] and
flower[4].

Figure 1 illustrates the typical layout of how tc CA works.
An incoming packet (alongside metadata) is examined
using filter rules which are priority ordered. Policy control
decides on the packet processing flow. Policy filter rules
could be composed of the same type (classification
algorithm) or they could be diverse and each filter rule
could use a different classification algorithm. The choice of
a classification algorithm could be a matter of taste or
policy intent3. We are not going to go into the details of the
packet pipeline control of a policy graph; for details, the
reader is referred to [1].

In this paper we set out to do performance analysis of the
two new classifiers in comparison to the u32 classifier.

What started as a simple trip to benchmark 3 different tc
classifiers for a netdev paper became a journey
documented in this paper. It was non-trivial to zone in on a
few tests that would be considered fair. We spent 4-6
weeks analyzing different network subsystems where tc
applies and in the process performed thousands of tests.
Investing all that effort led us to a path of defining more
specific tests and refining them to meet our end goals. We

2 by letting a thousand flowers bloom i.e. not allowing
monopolies of classification algorithms
3 e.g. to first match using a classifier that looks at some header
and then classify further using another rule that uses a
classification algorithm specialized in string searches

Figure 1: filter-action flow control

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

mailto:hadi@mojatatu.com

justify our choices of tests in Section “Defining The Tests”
and define the refinement of the tests and collection of
results in Section “Preparing For The Clash Of The
Classifiers”.

Meeting The Players

In this section we provide context for the landscape where
the classifiers run.

Illustration 2 provides a nutshell summary of an IP packet
processing path in relation to the CA subsystem.
An incoming IP packet on a linux netdev/port that needs to
be forwarded goes through the following paths:

1. Optionally subjected to the ingress qdisc and
therefore optionally the CA subsystem within
ingress qdisc.

2. Hit the input of IP processing entry point ip_rcv().
3. Hit the IP forwarding code where selection of the

next hop and netdev port is selected.
4. Optionally subjected to the egress qdisc of the

selected egress netdev port and therefore
optionally the egress CA subsystem.

5. Finally sent out on the egress port selected

An outgoing packet (from the host, top right hand corner
arrow of illustration 2) goes through a similar process:

1. Selection of nexthop and egress netdev port (not
shown in illustration 2)

2. Optionally subjected to the egress qdisc of the
selected netdev port and therefore optionally the
CA subsystem.

As observed we have a choice to use either the ingress CA
or egress CA for the purpose of our testing.

The bpf Classifier
Linux extends the classic Berkeley Packet Filter(bpf)[4] in
two ways: by using sockets as attachment hooks instead of
ports/netdevs and by providing additional decision
branching4.

4 Original bpf definition had a binary choice; either the
matched packet is to be allowed or dropped.

Illustration 3 shows a simple linux bpf program's internals.

Within the kernel, bpf uses a register based VM (as
opposed to a stack based one such as found in the Java
interpreter) which makes it easy to map to local CPU
instruction sets: therefore a just-in-time (jit) bpf variant
exists in the kernel for many supported CPU architectures.
A bpf program can fetch data from the packet(via load
instructions), store data and constants in its registers,
perform operations on packet data and compare(via
compare instructions) the results against constants or other
loaded packet data before issuing a verdict.

A user application needing to install a filter in the kernel
typically would assemble instructions and compile them in
user space before pushing the resulting bytecode into the
kernel. Although it is trivial to write C code to generate
bytecode, in our tests we used a utility called pcapc[8].

While standard Linux socket filters encapsulate a
monolithic bpf program, the tc bpf classifier allows
combining multiple bpf programs to achieve a policy as
shown in illustration 4.

Illustration 4 also shows the tc bpf classifier with the three
possible verdicts a bpf program emits. For the sake of
brevity, we refer the reader to the netdev11 paper on the tc
bpf classifier [9].

There are a few features that we did not include in our
testing for lack of time: Starting kernel 4.1, the tc bpf
classifier uses ebpf[10] which provides much more
powerful packet processing capabilities. None of the tests
documented exercised those features. We also did not use
bpf to craft tc actions or use the DA(Direct Action) mode
where the lookup and resulting action could be all crafted
with bpf bytecode.

Illustration 4: Classic BPF use in tc

Illustration 2: Basic Landscape

Illustration 3: Classic BPF

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

The flower Classifier
The flower classifier[3] started life trying to be a 14 tuple
openflow classifier. During its patch submission phase,
David Miller requested that it be reconsidered to instead
utilize the kernel flow cache. It was then rewritten in its
current format which classifies based on linux kernel flow
cache fields.

The flow cache is built when a packet bubbles up or down
the network stack. Each network sublayer updates the flow
cache and may re-use the cached information from the
previous sublayer.

Flower supports the following tuples which are collected in
the flow cache:

source MAC, destination MAC, ipv4 or v6 source and
destination IP addresses, and source and destination
transport port number. Additionally, the netdev/port a
forwarded packet arrived on is a valid classification tuple
(eg is useful at the egress CA classification in case of
forwarding paths). Essentially, these 8 tuples are used for
lookups in flower.

There are other tuples collected in the flow cache such as
GRE keys, MPLS, vlanids and TIPC which flower ignores
at the time of publication but potentially will be available
in the future.

A user programs policy into the kernel using the tc utility
by specifying the flow cache tuples of choice. The filter
rules are stored in the kernel in a hash table and used in the
packet path for lookups.

As illustration 5 demonstrates, when a packet arrives at the
specific CA (in/egress) subsystem, flower checks if the
packet already has the flow cache populated. If the cache
does not exist yet, flower then creates it by invoking all the
relevant subsystems to fill in their corresponding flow
cache fields. If, however, the cache already exists then
flower uses the packet's flow cache fields as keys to lookup
the (policy populated) hash table.

Upon a match, the resulting bound action graph is then
exercised.

The u32 classifier

The ugly (or Universal) 32bit key Packet Classifier has
been around since the introduction of traffic control into
Linux.

U32 uses 32-bit key/mask chunks on arbitrary packet
offsets for filter matching. The filter nodes each constitute
one or more of these 32bit key/mask/offset constructs
which are used for matching. Nodes hang off hash table
buckets.

Nodes have 32 bit handles that uniquely identify them as
illustrated in figure 6 describing their location. The 32bit
handles are split into 12bit hash table id, 8bit bucket id and
12bit node id. This means the system can have a maximum
of 4096 hash tables, each with 256 buckets and with each
bucket holding a maximum of 4096 nodes.

Nodes can link to next level hash tables, other nodes and
buckets. A very efficient protocol parse tree can be crafted
using these described semantics as we will demonstrate
later.

The default u32 classifier setup is shown in Illustration 6.
A default hash table (hash table id 0x800) with a single
bucket (bucket id 0) is created; user entries are populated
in order of priority. Essentially this becomes a priority
ordered linked list of filters. An incoming packet will be
parsed and matched in the filter priority list. The first
match wins (meaning there could be other low priority
filters which partially or fully match the packet) and the
resulting bound action graph is then exercised.

In more complex setups (as we describe later) the packet
headers can be incrementally parsed and the packet walked
through the mesh of the constructed hash tables to
eventually come to a leaf node which holds a bound action
graph.

Defining The Tests
We define the classifiers and their associated algorithms as
the System Under Test(SUT).

The starting assumption was that all classifiers should be
able to handle:

Illustration 5: The Flower Classifier

Illustration 6: Basic u32 classifier

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

• Per flow filter rules as opposed to a grouping of
flows (e.g. via hashing algorithms). We define an
ip flow as the classical 5 tuple specification
(source ip address, destination ip address, ip
protocol, source transport port and destination
transport port)

• Account for every packet and byte at a per-flow
level filter (using counters) as test validation.

It is also required that we be fair to all 3 classifier
algorithms chosen and pick tests that did not favor one
algorithm over another.

Picking The Metrics
We picked several metrics to compare the different
classifiers. We list them here to illustrate our thought
process.

• Datapath Throughput performance

• Datapath Latency

• Usability

◦ operator friendliness

◦ programmatic interfaces and/or scriptability

• Control path throughput and latency

We spent a lot of time on a discovery journey to define the
constraints but we were only able to test the data path
throughput performance in time for the conference.

We will no more than an educated opinion on the usability
metric; and we hope in future work to cover the remaining
outstanding metrics.

Reducing Test Variables
Given that the classifiers are surrounded by a lot of kernel
code, the results could be influenced by a lot of other
kernel and hardware variables; therefore, we needed as
best as we could to isolate the SUT such that our results are
not distorted by distracting overhead. To focus on the SUT,
therefore, required reducing as many variables as possible.

Our initial instinct for throughput and latency tests was to
connect two physical machines back to back: a sender
machine which generates traffic to a receiver machine
where the SUT resided. The sender machine would use
pktgen[6] to send packets to the SUT machine. The
configuration of the SUT machine would decide what
packet path(per illustration 2) to take to get to the SUT.
The packet processing would then complete when packets
get forwarded back to the sender box where our results
would be captured.

As it turned out, preliminary tests with this approach had
so many variables that it affected the results and analysis;
we spent time staring at profiles and decided against
pursuing such a setup. The following were identified as
possible hazards:

– System multi-processing contention and locks

– Driver code paths (both ingress + egress)

– Slow system code paths

– Intermediate handoff queues (backlog, egress qdisc etc)

Pktgen Ingress Mode

The first thing we elected to do was to run pktgen in
ingress mode [7]. This meant we did not need an external
sender machine and could therefore reduce variable cost of
the ingress driver(driver interrupts, code path etc). This
mode also allowed us to generate packets on a single
stream on one cpu; which helped us achieve our goal to not
have contention across multiple CPU threads being
accounted for.

Using The Dummy Netdev

The second thing we chose to help in reducing variables
was the use of the Linux dummy driver. The dummy driver
acts as a black hole for any packets sent to it. It counts
packets and their associated bytes then drops them on the
floor. By using the dummy driver we do not have to worry
about sending packets externally and the associated
overhead of the driver (interrupts, locks, long code paths
etc).

SUT Machine Parameters
As noted above, at this point in our progression, we had
achieved the pleasure of running all our tests on a single
machine. We chose to use the Intel NUC[11] for its size5.
The NUC has the following parameters:

• Quad core i7-5557u @3.10Ghz

• 16G RAM (1600Mhz) Dual memory channels

Kernel choice:

• net-next 4.4.1-rc1 with two patches, namely:

◦ bug fix for flower classifier[12]

◦ pktgen egress enhancement to not bypass the
egress qdisc6

Picking The Battle Scene
At this point in our journey we had identified the different
scenarios for testing. The reincarnation of Illustration 2 is
shown in Illustration 7. Given our interests are to test
classifiers in a fair way for all three classification
algorithms, we chose to experiment by dropping and
accounting for packets at different code paths illustrated by
the blackholes in Illustration 7.

5 So we could bring it to the conference and show live
testing and results (which we did).

6 Jamal created this patch. John Fastabend independently
came up with a different patch after a discussion on
netdev. John has promised to merge the two and submit
upstream.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

There are two possible sources of packets; one at the
pktgen ingress(emulating packets coming from outside the
machine) and another at the pktgen egress (emulating
packets coming from host side withing the machine)

Dropping At ip_rcv()

On the ingress path we start with intentionally setting the
wrong destination MAC address via pktgen; this means the
network stack will not recognize that packet as belonging
to the system. The result is that ip_rcv() will drop the
packets it receives.

With that setup in place went through the following
scenarios:

1. Optionally add the ingress qdisc in the packet test path.
When the qdisc is skipped we refer to the test in the
document as “no qdisc”.

2. When ingress qdisc is present, optionally add a CA
subsystem with choice of classifier under test.

• When the qdisc is used but the CA subsystem
is skipped, we refer to the test as “qdisc
only”.

• When a CA subsystem is added, we install a
single policy match with an action which then
accepts and counts the packet. We repeat this
exercise for all classifiers under test.

Pktgen was made to send, using a single core, 30 seconds
worth of bursts as fast as possible; all tests are repeated 4
times. Pktgen reports the averaged achieved throughput
which we record and graph.

Illustration 8 shows the results. The difference in
performance when an ingress qdisc (“qdisc only”) was
installed vs when none existed (“no qdisc”) was less than
1%. As can be observed, at packet size of 1020 bytes both
tests showed pktgen throughput of about 250Gbps. This
result was impressive for a single processor performance.
But more importantly it demonstrates that the presence of
an ingress qdisc did not add overhead that would gravely
affect our results collection.

For classifiers the results demonstrate that the differences
between u32, bpfjit and bpf were also very small (although
again consistently reproducible) at 173Gbps, 166Gbps, and
151Gbps. On the other hand flower did not fare as well
capping at about 63Gbps. Should be noted the numbers for
both u32 and bpfjit were north of 20Mpps.

These tests were unfair to flower. The flower classifier
thrives on flow cache being populated. Such a case would
happen on host-sourced packets. In our test, the flower
classifier had to rebuild the cache for every single packet.
Flower's usage of rhashtable was a clear bottleneck that
was visible. However, that may be expected with the 64 bit
compares used and better results may be achieved if we did
2x32-bit compares. So very likely there is room to improve
the rhashtable comparator.

It was also pointed to us that the pcapc tool generated non-
optimal bpf bytecode for both bpf and bpfjit. We were
hoping to get results with more optimal bpf bytecode but
could not get it done before paper submission deadline. We
hope to publish our results and update the paper when we
get the test done.

In all our tests in the rest of this paper, we verified that the
bpfjit extension always outperformed bpf without jit. For
this reason we stopped testing any further bpf without jit.

Dropping at Ingress CA

Our next sets of experiments involved adding a drop policy
at the ingress. It was felt this would shorten the code path
and make it easier to account for.

Illustration 9 shows the results. To our surprise, only
flower showed consistent improvement over dropping at
ip_rcv(). This maybe explained as due to the effect of
memory pressure. We did not have time to investigate
further.

Illustration 7: Many Roads To Take

Illustration 8: Mbps Throughput Of Packets
Dropped At ip_rcv()

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

The difference between dropping at the two locations was
so small that given a choice between the two test setups,
we choose to drop at tc ingress due to the convenience of
the testing and the simplicity of result collection.

Ingress To Egress Path

At this point in our progression we set out to test sourcing
packets at ingress but allowing them to proceed to the
egress.

Our initial goal was to forward packets to an ipv4 route-
selected nexthop via the dummy device and experiment
with dropping packets at the different hooks on the egress.
We were very surprised at the performance degradation of
forwarding. We ended spending a lot of cycles chasing this
ghost. We stared at a lot of profiles which seemed to
indicate the fib_trie lookup was the bottleneck even with a
single route.

To analyze further, we removed the ingress qdisc and
filters from the test path and introduced a blackhole route.
The blackhole route drops the packets right after ip lookup
(reducing the overhead of the second leg which traverses
code towards and including the dummy end drops). As the
illustration 10 shows, we see a pktgen throughput of
25Gbps vs 21Gbps for blackhole drop vs routing to egress
which points to the fact the processing leg after route
lookup is not a large contributor to these results I.e the
theory is that the bottleneck lies in IP forwarding.

To get a different forwarding view, we experimented with
the test classifiers using the mirred action to redirect to the
dummy device(bypassing IP forwarding). Illustration 10
shows that this gave us in most cases 3 times the
performance. While it is not totally fair to compare the two
(forwarding does a few more things), we are still puzzled
by these numbers. It is possible there were some icache
effect due to the long code path. We did not have time to
investigate further; chasing this ghost meant taking time
away from our real goal of testing the classifiers. We report
these results for anyone interested in pursuing them further.
The experiments are very simple to reproduce.

So at this point in our investigation, it was clear to us we
do not want to proceed with testing by sourcing at ingress
and proceeding all the way to the egress due to the
forwarding overhead polluting the results. And for that
reason we stopped running that specific path's tests.

Pktgen Source At Egress And Dropping At CA

Our next step was to test sourcing on egress (emulating the
host stack sourcing these packets).

Illustration 11 shows the results at 1020B. In the “Default”
case we see the egress qdisc being bypassed and the
dummy device dropping packets. The throughput
performance was 160Gbps, a lot slower than the ingress
side but nevertheless still formidable for a single CPU.

In order to add classifiers, we needed to add an egress
qdisc. And things got interesting when we did that: as
illustrated with graph “qdisc only” we see a throughput
drop of almost 50%. Profiles show the egress qdisc lock
being the culprit. The performance discrepancy surprised
us given we are only running a traffic stream on a single
CPU and no NIC hardware overhead existed. This dispells
the popular myth that the egress cost is related to driver
DMA overhead.

U32 and bpfjit showed a tiny drop on performance in the
comparison against adding an egress qdisc (both in the
80Gbps range) indicating the main overhead comes from
the qdisc. Flower showed degraded performance for the
same reason explained for the ingress side (I.e related for
need to rebuild flow cache).

Illustration 9: Throughput comparison of
dropping at ip_rcv vs tc action

Illustration 10: Ingress To Egress Path

Illustration 11: Egress Transmit and TC Drop

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

At this point we decided that it was a bad idea to run our
tests sourced at the egress.

We decided to stop experimenting with the different hooks
and just settle on the ingress tc drop tests.

 Jitter Effect On Collected Results

On all our test, as mentioned earlier, we always made 4
runs of each test lasting 30 seconds. We would then take
the average of the 4 runs and compare it against the
minimum and maximum results. Illustration 12 shows a
summary across different packet sizes.

We observe that the jitter was so small it felt
inconsequential. So while we continued to collect all the
results; going forward on this paper we are going only to
show the averages.

Packet Size Effect On Collected Results

Another observation we made is that the effect of packet
size was not very large. I.e our packets/second results were
not very much affected by packet size.

Illustration 13 shows the results for earlier experiments.

How Many Classification Tuples?

So far all our reported tests have been running with a
single flow and single tuple to match on. This is not very
realistic real world scenario. We therefore tested where
each of the classifiers looks up the five tuples described
earlier. Illustration 14 shows the results.

The performance differences between the two scenarios
were not huge.

So from this point on, all our experiments will run with 5
tuples.

Preparing For The Clash Of The Classifiers
At this point in our investigation, we had decided on the
our parametrization as constituting the following:

• All test running on a single core.

• Ingress tc qdisc, per-flow 5 tuple match classifier
filter rule and drop.

• ignore bpf: BPFjit was always better

• Focus on average of 4 runs each 30 seconds
ignoring max and min values in result illustration

• Use a single Packet size of 1020B

The Final Confrontation
Now that we had our SUT, tests and metrics well defined
we set to run our core tests.

Given time constraints we settled on doing only throughput
tests. We selected to vary the number of configured filters
and looking for the best vs worst case scenarios.

For best case scenario tests, we arranged the rules such that
the packet lookup finds a target matching filter on first
lookup. By varying the number of filters we would expose
any issues with possibly lookup dependencies in
classification algorithm.

For worst case scenario, we arranged the rules such that a
target filter match is found last. Essentially we forced the

Illustration 12: Ingress Drop Action With
Min/Avg/Max runs

Illustration 13: PPS Drop At ip_rcv() with
different packet sizes

Illustration 14: varying number of tuples from
1 to 5

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

lookup to be a linked list walk with the target match found
last.

In both cases we repeated tests with incrementally adding
filters ranging from 1 to 1000.

Best Case Scenario

As can be observed for all the 3 classifier types varying the
number of filters did not have any impact. U32
performance was around 175Gbps; bpfjit around 165Gbps
and flower around 65Gbps.

Worst Case Scenario

As observed there is a very sharp drop in performance as
the number of rules goes beyond 100.

To put it into perspective:

All the classifiers performances went down by a magnitude
each time the number went up by a magnitude. In the worst
case, at 1000 rules, u32 outperformed the other two being
able to process about 463Mbps while bpfjit was able to do
73Mbps and flower did 88Mbps.

We believe that given in each case the lookups were linear
with increasing number of filters these deteriorating results
were to be expected. We did not have time to investigate
why for example u32 fared so much better than the other
two. We are going to take a second look at this in the
future.

Scripting u32 to improve performance

As mentioned earlier, the u32 classifier allows for scripting
to dictate how lookups occur. In this case we arranged the
classification based on our knowledge of the traffic
patterns.

We made the first lookup hash on the expected subnet /24
and then based on the 3rd octet of the source IP address
selected a bucket on hash table 1.

Each bucket on hash table 1 was linked to a secondary
hash table (for a total of 256 buckets). For each secondary
table bucket we would look at the 4th octet of the source IP
address and select bucket.

On each secondary table bucket we had a single match
inserted for a total of 64K matches.

Any of the 64K entries could be found in 3 lookups.

We then generated traffic that had 64K different flows.

Our results are shown in Illustration 18. The results were
very consistent in the range of 115Gbps at 1020B packet
size. It was clear from experimentation that we could have
added over 128K flows and still achieved the same
performance numbers - but we did not have time to pursue
such an experiment further.

Illustration 15: Best Case Lookup vs number
of rules

Illustration 16: Worst Case Lookup vs number
of filters

Illustration 17: Scripting u32 for multi-trie
lookup

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

If you take away the fact that we were aware of how the
traffic patterns looked like and therefore optimized for the
best case scenario, these are impressive numbers
considering we run on a single core.

It should be noted with the ebpf extensions, the bpf
classifier can be taught likewise to behave this way
programmatically (not by scripting, rather coding and
compiling).

Usability
We did not perform a formal analysis of the usability of the
different classifiers, so what we are positing is merely an
opinion.

U32 and bpf do not fare well from a human usability point
of view; bpf is more human friendly7 than u32 whereas
flower was the best of all 3.

From a code programming flexibility and usability point of
view, bpf is the winner.

U32 can be scripted, as we demonstrated, to provide
powerful custom lookups. It is arguably the best operator
friendly classifier.

Conclusion
We started with intent to work on performance analysis of
3 tc classifiers: bpf, flower and u32. Instead the majority of
our time was spent on a journey of discovery on how best
to perform the analysis in a fair and non-intrusive way.

We argue that our most important contribution is the
documentation of the journey we took. We hope it inspires
other netdevers, when doing performance testing, to watch
closely on details such as metrics, assumptions made and
isolation of the SUT from other subsystem noise
contribution. The wise saying “numbers speak loud”
applies8 with the caveat lector that: Seville Oranges and
Ottawa strawberries are fruits but different; a fair
comparison requires understanding of taste-bud metrics as
opposed to the falsehood of striving to claim the oranges as

7 If you ignored the fact that you need a bpf bytecode
compilation (which maybe harder to debug).

8 Posting of netperf results and claiming victory

better strawberries9. We hope the reader is left with at least
the view that we tried hard to achieve that goal when
comparing the 3 classifiers.

Overall, given the constraints we faced we conclude u32
was the most performant classifier.

The bpf classifier was impressive – and as described could
be tweaked to give better numbers. The flower classifier
would perform much better with host-stack sourced
packets. We did not have time to pursue either angle of
validation and we leave this to future work.

Future Work
There are several opportune activities that the community
could undertake to get us to the next level.

The bpf classifier performance testing with ebpf helpers is
of definite interest to the netdev community. Of additional
interest is to see if integration of actions in bpf classifiers
provides even more improved performance.

Testing the Flower classifier on an egress path with many
flows is something that we would like to pursue. We
believe Flower will shine in such a setup.

It is our opinion that both u32 and flower will hands down
beat bpf in the control to datapath update if the rules were
to be generated and updated on the fly due to the fact that
the bpf program will have to be generated before being
installed. We hope to prove (or disprove) this point in the
future.

Acknowledgements
The preparation of these instructions and the LaTeX and
LibreOffice files was facilitated by borrowing from similar
documents used for ISEA2015 proceedings.

9 Yes, that is a pretty lame way of saying “orange-apple”;
but coolest way of mentioning the last two cities where
netdev took place in a relevant sentence on
performance;->

Illustration 18: Multi-trie results

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

References
1. Jamal Hadi Salim, “Linux Traffic Control-Action Subsystem

Architecture”, Proceedings of Netdev 0.1, Feb 2015
2. Daniel Borkman, “classact qdisc patches”, netdev mailing List,

Jan 2016. kernel commit
1f211a1b929c804100e138c5d3d656992cfd5622

3. Jiří Pírko, “Implementing Open vSwitch datapath using TC”,
Proceedings of Netdev 0.1, Feb 2015

4. Steven McCanne, Van Jacobson, "The BSD Packet Filter: A
New Architecture for User-level Packet Capture", Dec 1992

5. Daniel Borkman, “BPF classifier”, net/sched/cls_bpf.c
6. netc/core/pktgen.c
7. Alexei Starovoitov, kernel commit:

commit 62f64aed622b6055b5fc447e3e421c9351563fc8
8. pcapc

https://github.com/pfactum/pcapc.git
9. "On getting tc classifier fully programmable with cls_bpf"

(Daniel Borkmann) @netdev11
10. “BPF In-kernel Virtual Machine” Alexei Starovoitov

@netdev01
11. Intel NUC

http://www.intel.com/content/www/us/en/nuc/products-
overview.html

12. J Hadi Salim, kernel commit:
66530bdf85eb1d72a0c399665e09a2c2298501c6

Author Biography
Jamal Hadi Salim has been dabbling on Linux and open source
since the early 90s. He has contributed many things both in the
Linux kernel and user-space with a focus in the networking
subsystem. Occasionally he has been known to stray and write
non-networking related code and on rare occasions, such as this,
documentation.

Lucas Bates discovered Linux through a friend in the late 90s. He
once paid for a Linux distro CD – money he considers well spent
to this day. Lately he's been immersing himself deeper into tc and
iproute2.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

http://www.intel.com/content/www/us/en/nuc/products-overview.html
http://www.intel.com/content/www/us/en/nuc/products-overview.html
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf

