

An Adventure of Analysis and Optimisation of the Linux Networking Stack Marco Varlese, Kim-Marie Jones

28/02/16

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIONARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF, SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm%20 Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Celeron, Intel, Intel logo, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel SpeedStep, Intel XScale, Itanium, Pentium, Pentium Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Intel® Active Management Technology requires the platform to have an Intel® AMT-enabled chipset, network hardware and software, as well as connection with a power source and a corporate network connection. With regard to notebooks, Intel AMT may not be available or certain capabilities may be limited over a host OS-based VPN or when connecting wirelessly, on battery power, sleeping, hibernating or powered off. For more information, see http://www.intel.com/technology/iamt.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, an Intel Trusted Execution Technology-enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPMV1.2 as defined by the Trusted Computing Group and specific software for some uses. See http://www.intel.com/technology/security/ for more information.

+Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® Pentium® 4 Processor supporting HT Technology and an HT Technology-enabled chipset, BIOS, and operating system. Performance will vary depending on the specific hardware and software you use. See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VIMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

* Other names and brands may be claimed as the property of others.

Other vendors are listed by Intel as a convenience to Intel's general customer base, but Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be subject to change without notice.

Copyright © 2016, Intel Corporation. All rights reserved.

Agenda

- Introduction
- Use cases
- BIOS, Kernel and system settings
- Benchmarks
- Next steps

Introduction

Technical Objectives

Enhance performance of the standard networking stack on Linux

- Improve <u>out-of-the-box</u> Linux performance
- Keep using existing software stacks (i.e. TCP, UDP, IPSEC, etc.)

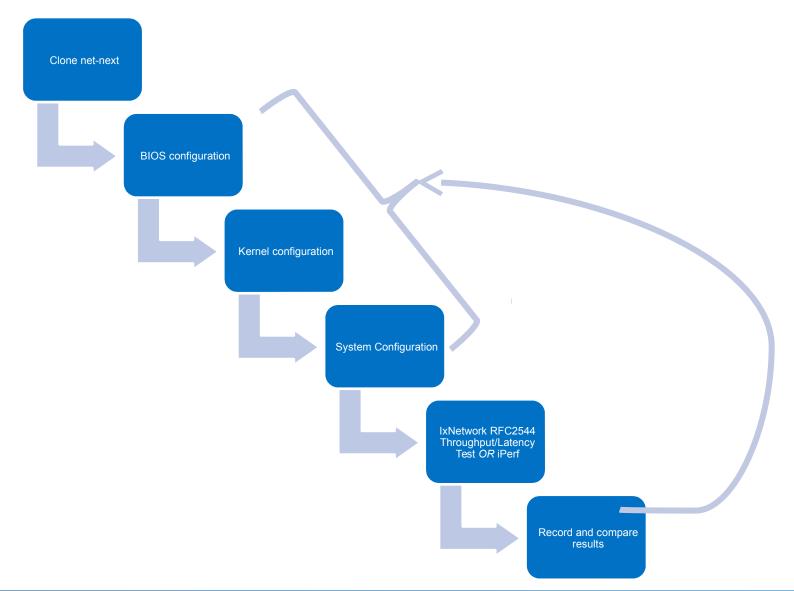
Provide a detailed platform setup guidelines (Cookbook)

- BIOS
- Kernel configuration
- System-level settings (i.e. /proc/sys) & configuration (i.e. queues affinity, scheduling algorithm, TCP congestion control algorithms, etc.)

Bare metal, Virtualisation and Containers will benefit from any performance enhancements

High-level approach

Network traffic to target L2 and L3 (UDP and TCP)

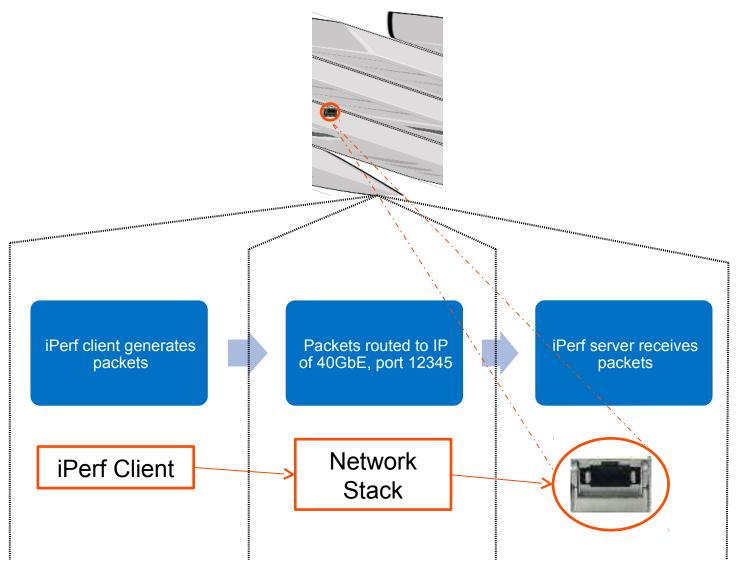

- To extend to SCTP in the future to cover some Telco use cases
- Packet sizes 64, 128, 256, 512, 1024, standard MTU size, jumbo frames and IMIX profile
 - IMIX Profile:

Packet size	Distribution
64	57%
570	7%
594	16%
1518	20%

Performance benchmarking

- Network side (throughput / latency / flows scalability)
- Platform side (statistics / counters i.e. CPU utilisation, memory utilisation, interrupts, etc.)

Iterative Testing Procedure



Use Cases

Forwarding Scenario

End-point Scenario

BIOS, Kernel and System Settings

BIOS, Kernel & System Settings

- Identified:
 - A few BIOS settings affecting throughput/latency
 - More than 20 system-level settings affecting throughput/latency and overall system performance and scalability
 - 1 change to Kernel settings which affects throughput
- Each setting was benchmarked to have a thorough understanding of its impact
- Finally, have a best-known configuration for both forwarding and end-point scenarios

Configuration of BIOS / P-States

Feature	Orig. Status	New Status	Justification
Hyper- Threading	Enabled	Disabled	Will impact IRQ affinity settings
Turbo Boost	Enabled	Disabled	Unstable performance results, higher jitter
C-States	Enabled	Disabled	Prevent CPUs from sleeping; causes higher latency
P-States	Enabled	Disabled	Run at maximum frequency & voltage at all times

These settings may affect other system characteristics (i.e. power utilisation)

Kernel & System-level Configuration

<u>Kernel</u>

Feature	Orig. value	New Value	Justification
CONFIG_PREEMPT_NONE	N (PREEMPT _RTB=y)	Y	Preemption geared towards throughput

System-Level

/proc/sys/net/core/...

/proc/sys/net/ipv4/...

/proc/irq/<IRQ #>/smp_affinity...

ethtool

Benchmarks

Legal Disclaimer

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

§ Configurations: both system setup and test cases are described in the "Use Cases" section of this presentation

§ For more information go to <u>http://www.intel.com/performance</u>.

Intel, the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. © 2016 Intel Corporation.

Hardware Specifications & Benchmarking methodology

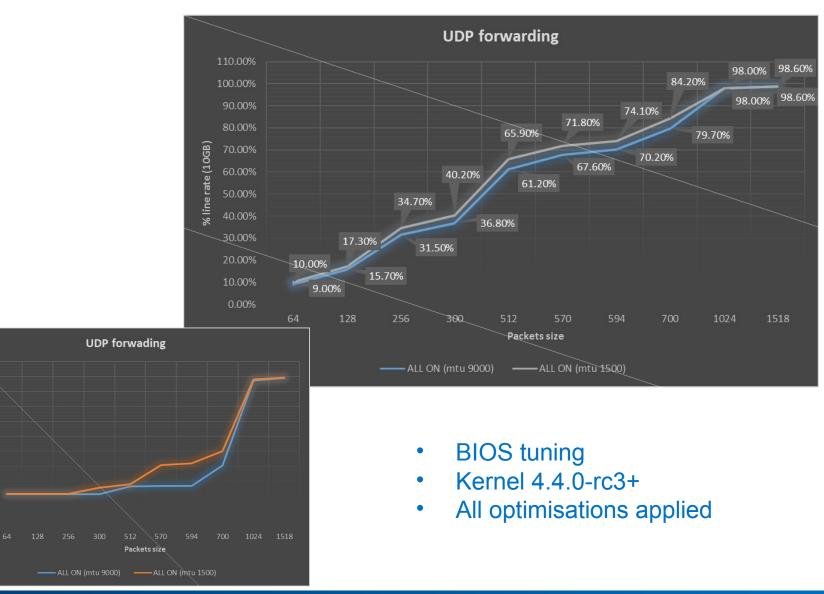
NICs:

- Intel[®] Ethernet Converged • **Network Adapter**
 - X710-DA4 (4 x 10 GbE)
 - XL710-QDA1 (1 x 40 GbE) •
 - PCIe v3.0 (8.0 GT/s) x 8 Lane

Platform:

- Gigabyte GA-X99-UD4 Motherboard ۲ (Desktop)
 - CPU: Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
 - RAM: 64 GB
- Each test case runs for 30/60 secs
- Throughput used for each packet size is the average over the total runtime
- CPU idle % is read after the test started, once it stabilises

TCP_NO_OFFLOAD ethtool -K \$dev rxhash off rx off tx off sg off tso off gso off gro off

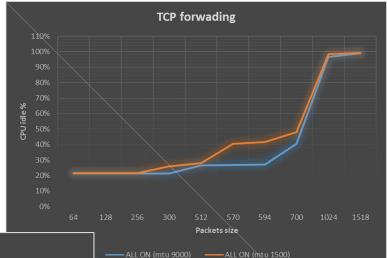

TCP_FULL_OFFLOAD ethtool -K \$dev rxhash on rx on tx on sg on tso on gso on gro on

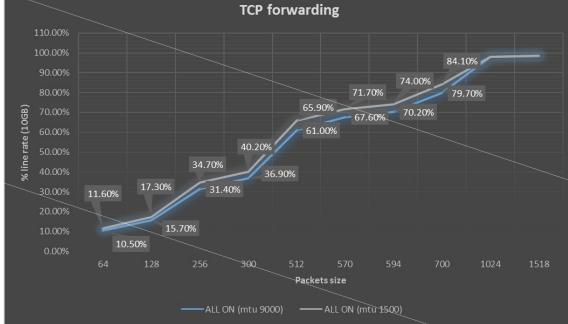
cpupower frequency-set --governor userspace cpupower --cpu all frequency-set --freq 3.0Ghz

GRUB_CMDLINE_LINUX intel_pstate=disable ipv6.disable=1 transparent_hugepage=always default_hugepagesz=2M hugepagesz=2M hugepages=4096 isolcpus=0

Some settings

UDP Forwarding net-next vanilla

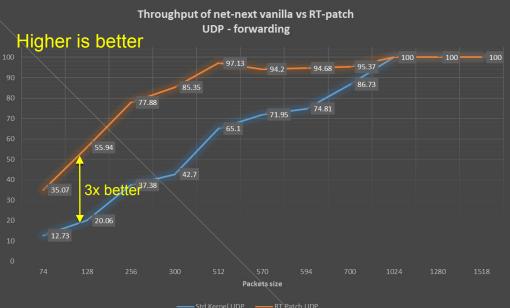


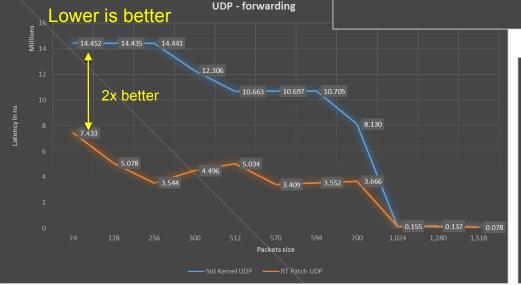

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

CPU idle %

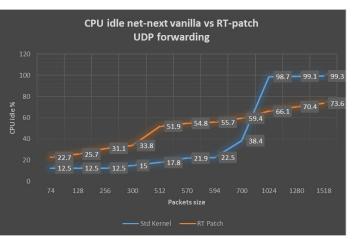
TCP Forwarding net-next vanilla

- BIOS tuning
- Kernel 4.4.0-rc3+
- All optimisations applied

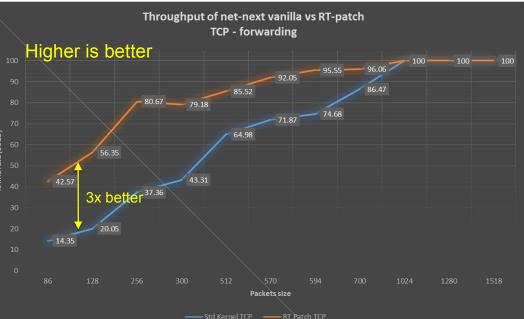


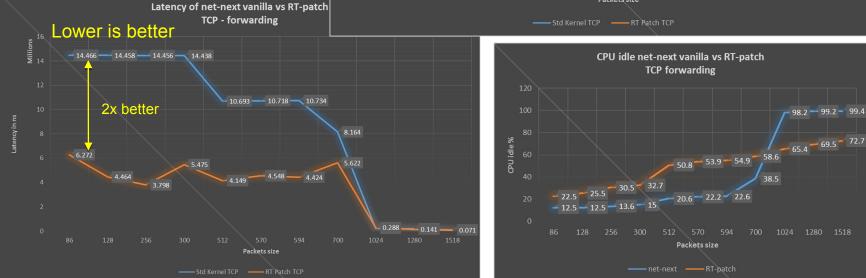


Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.


UDP Forwarding net-next vanilla vs RT-patch

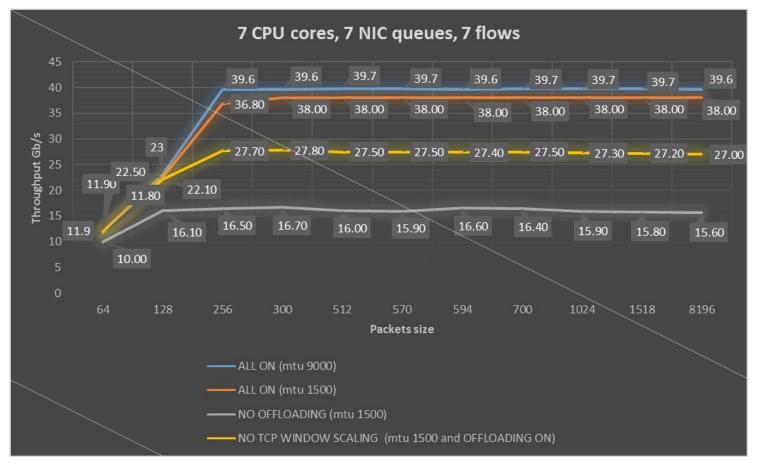
- BIOS tuning
- Kernel 4.4.0-rc3+
- All optimisations applied


Latency of net-next vs RT-patch

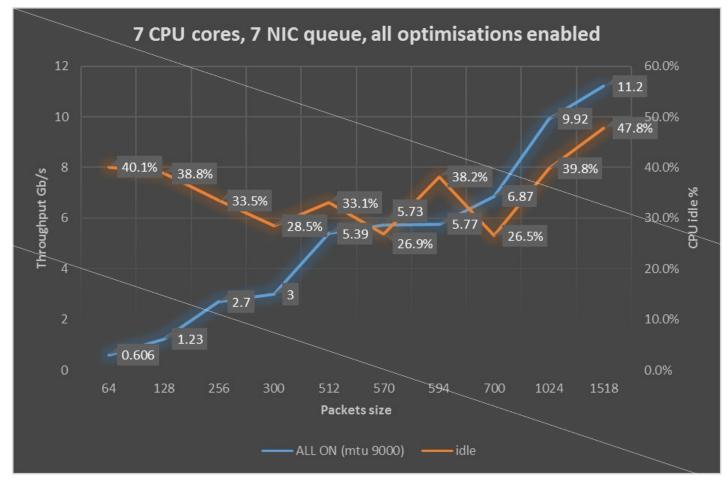


Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

TCP Forwarding net-next vanilla vs RT-patch


- BIOS tuning
- Kernel 4.4.0-rc3+
- All optimisations applied

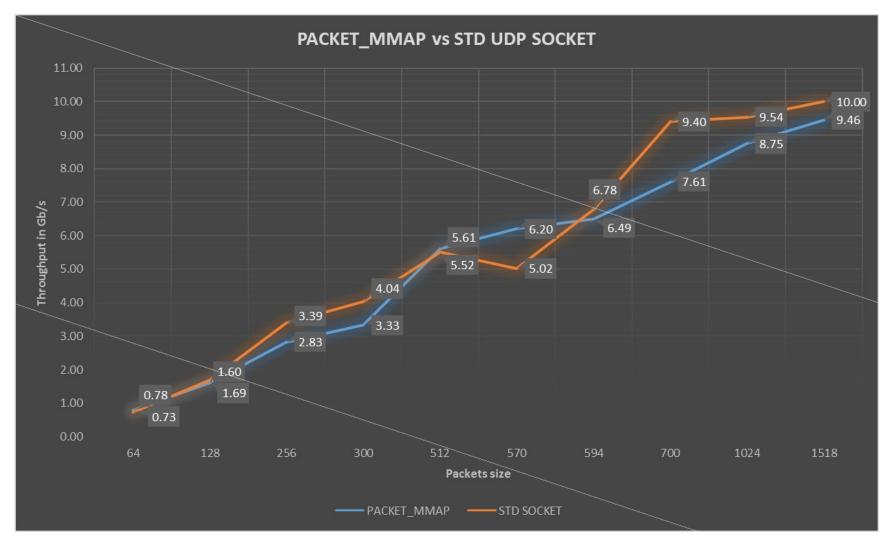
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.


Benchmark results (TCP iperf)

- Throughput scalability almost linear
 - 1 flow = 1.75 Gb/s
 - 7 flows = 11.9 Gb/s

- BIOS tuning
- Kernel 4.4.0-rc3+
- All optimisations applied

Benchmark results (UDP iperf)



- BIOS tuning
- Kernel 4.4.0-rc3+
- All optimisations applied

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Benchmark results (PACKET_MMAP)

Next steps

What's next

- Benchmark benefits of RT-patch in the end-point scenario
- Dig deeper into the MTU weirdness
- We had troubles using memory from huge pages allocation for the RX/TX rings in the PACKET MMAP case;
 - We're going to investigate this further
- Create a standalone app for L3 forwarding using PACKET MMAP
 - Investigate benefits of QDISC BY PASS
- Characterize performance optimisation using some real-life scenarios (i.e. customers' use cases, etc.)
- Start working on our 3rd phase and (hopefully) collaborate on code enhancements to the *netdev* mailing list soon
 - Identify bottlenecks •
 - locks, memory copies, interrupt handlers, cache misses, TLB misses, etc.

Conclusions & Recommendations

Anyone thinking of embarking on a similar "adventure" should:

- Thoroughly optimise at BIOS / kernel / system level
 - Large performance boost from this alone
 - Some optimisations are use-case / hardware specific
- Allow for:
 - Extended ramp-up time on networking stack
 - Extended research time into perf results
 - # cycles / function AND
 - locks, memory copies, interrupt handlers, cache misses, TLB misses, etc.

Thank You

Backup

Introduction

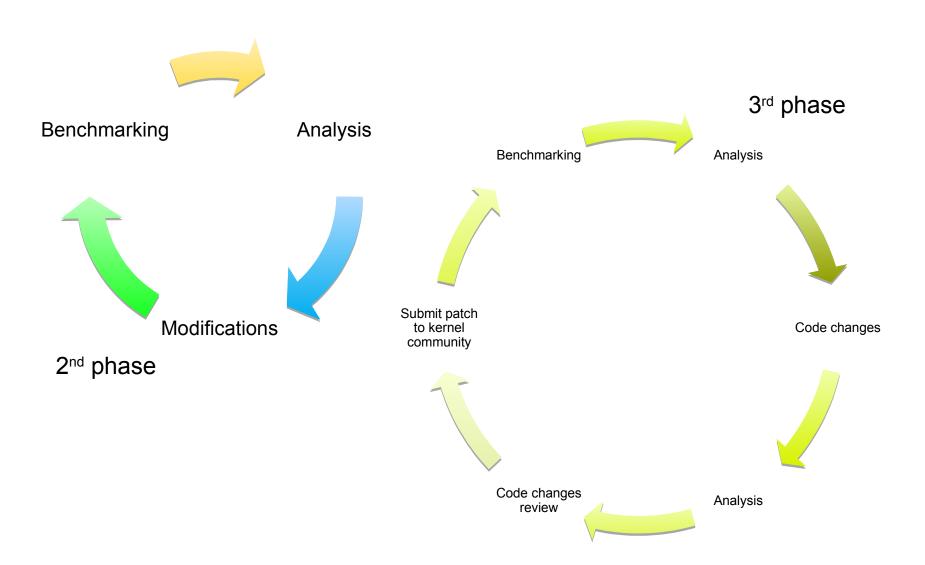
Many Linux users are interested in boosting performance of the general purpose Kernel networking stack

Different reasons (cost vs benefits, maintainability, manageability, scalability, flexibility, etc.)

Other Linux users are using *kernel-by-pass* technologies (i.e. DPDK) to boost packet processing throughput of software pipelines

Packets polled directly from user-space "drivers"

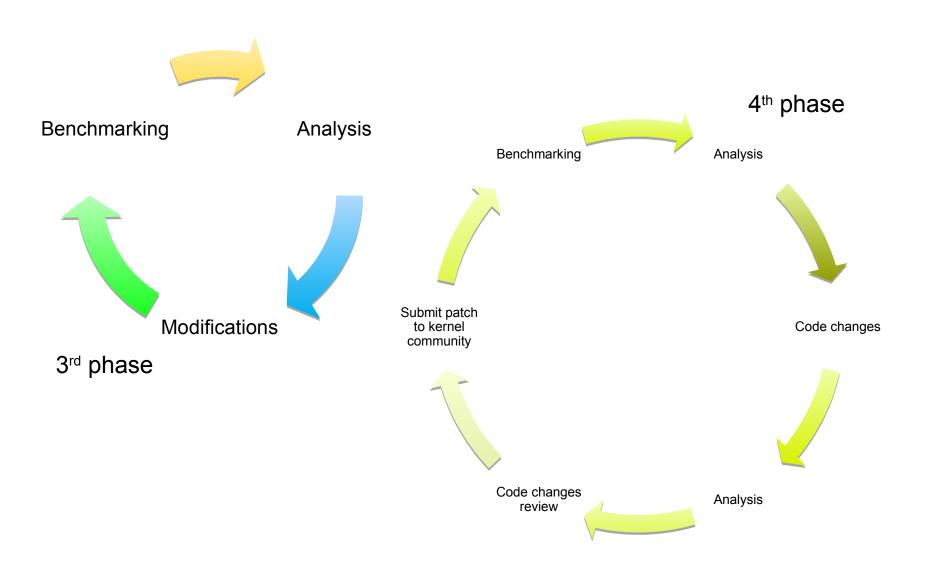
We would like to have a best-in-class configuration for the Linux Kernel to have high throughput, high packet density, low latency and better scalability


Methodology

Three phase approach

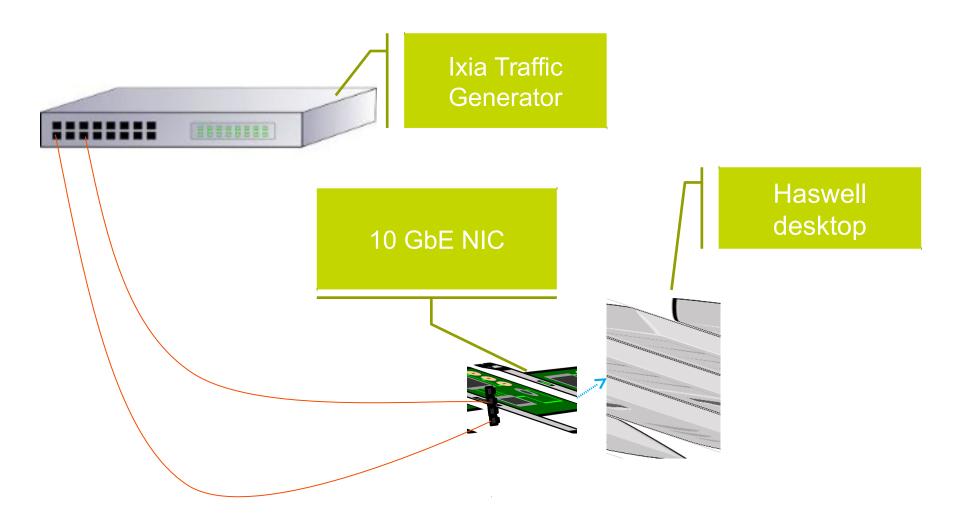
- 1. Measure performance of a Linux system (+net-next)
 - This represents what users will <u>experience</u> "soon"
- 2. Measure performance of a Linux system (+net-next) with our BIOS/Kernel/System settings
 - This represents what we <u>can achieve</u> without code changes
- 3. Measure performance of a Linux system (+net-next) with modified Kernel
 - This represents what we <u>could achieve</u> with our <u>code enhancements</u> being part of Linux kernel

3rd phase yet to be started


Methodology Four phases approach

- 1. Measure performance of a standard Linux distribution (Fedora)
 - This represents what users <u>experience</u> out-of-the-box
- 2. Measure performance of a Linux system (+net-next)
 - This represents what users will <u>experience</u> "soon"
- 3. Measure performance of a Linux system (+net-next) with our BIOS/Kernel/System settings
 - This represents what we <u>can achieve</u> without code changes
- 4. Measure performance of a Linux system (+net-next) with modified Kernel
 - This represents what we <u>could achieve</u> with our <u>code enhancements</u> being part of Linux kernel

4th phase yet to be started



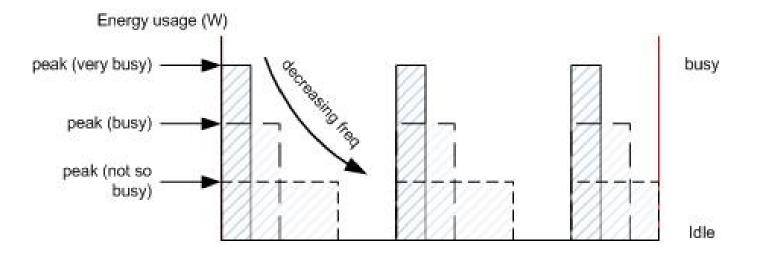
Optimisation

Two methods:

- Extensive research into network performance optimisation
- Iterative testing procedure

IxNetwork

Flexible, customisable, wire-rate traffic generation


	• Dig 22 • Bit (a) + Addition (and the construction) (and the con	= Ø 11 ù kipat
	Advant - Regulation 201	
de Dremison al Stameto	C 2 2 Commis	
- O fors		
+ Protects Protects Protects State		
 DC Traffic DC 12-8 Traffic Barris DC 12-9 Faix Groups 	Max Disp Name 01/10/2016 101121551 despoint cont the exerction will be abouted once the current operation ands. #0 01/10/2016 101121571 despoint cont The exerction will be abouted once the current operation ands. #0 01/10/2016 101121571 despoint of test. 10/10/10	2
() Imperments	81/11/2016 14:12:17: Tem mapped.	
+ QeldTob		
Captorn		2 ²¹
	Seat Hees, Ant CRU Statistics Ront Statistics Goode Antibact Statistics Truths Seat Statistics / Row View	• x #
	1.101 Noted balls the Personal Persona	
	1 2008 L00-201 DOE 041-002 Flori-Flori-Doop IIIII DOUDD III. DOUDD III. II. 2008 III. III. 2008 III. 20	96 IZJINANG 3LITI 6,380 PLUTLAPE 2
	I HE STRAGE A B B A O	
	Const. 1996. Sugardar Freedom Transmitter State Westmittel Can Take V State Vaporter Sugardar State St	
		Traffic Disposed after (D10011) 🛛 El Logis (Raemings 😜
1794 🛃 🗃	😁 😋 🍇	10 10 10 10 10 10 10 10 10 10 10 10 10 1

BIOS Options

Feature	Description
Hyper-Threading	Intel® Hyper-Threading Technology uses processor resources more efficiently, enabling multiple threads to run on each core. As a performance feature, it also increases processor throughput, improving overall performance on threaded software.
Turbo Boost	Intel® Turbo Boost Technology accelerates processor performance for peak loads, automatically allowing processor cores to run faster than the rated frequency if they're operating below power, current, and temperature specification limits.
C-States	C-states are idle states (except C0).

P-States

A P-state is an operational state; the core can be doing useful work in any P-state. P0 has highest operating frequency and voltage.

Kernel Configuration

Feature	Orig. value	New Value	Justification
CONFIG_HUGETLBFS	Y	Y	Fewer TLB misses
CONFIG_HZ_1000	Y	Y	Higher timer interrupt resolution
CONFIG_INTEL_IOATDMA	Y	Y	DMA engine; allows the kernel to offload network data copying from the CPU to the DMA engine
CONFIG_DMA_ENGINE	Y	Y	Direct system memory access, see above
CONFIG_ASYNC_TX_DMA	Y	Y	async_tx API can utilise offload engines for memcpy, etc
CONFIG_DMADEVICES	Y	Y	Presents DMA Device drivers supported by the configured arch
CONFIG_DCA	Y	Y	Allows network driver to warm up CPU cache
CONFIG_PREEMPT_NONE	N (PREEMPT _RTB=y)	Y	Preemption geared towards throughput
CONFIG_HZ_PERIODIC	Y	Y	Timer tick running at all times

System-Level Configuration

/proc/sys/net/core/...

/proc/sys/net/ipv4/...

/proc/irq/<IRQ #>/smp_affinity...

ethtool

System Level Configuration

/proc/sys/...

• Allows reading and setting of system runtime information

/proc/irq/\$IRQ/smp_affinity

Move management interface interrupt to be handled by CPU0

echo 01 > /proc/irq/\$MGMT_IFACE_INTERRUPT/smp_affinity

Queues are affinitised to CPU1 - CPU7:

echo 02 > /proc/irq/\$QUEUE-TXRX-0/smp_affinity
echo 04 > /proc/irq/\$QUEUE-TXRX-1/smp_affinity

echo 80 > /proc/irq/\$QUEUE-TXRX-6/smp_affinity
echo 02 > /proc/irq/\$QUEUE-TXRX-7/smp_affinity

Forwarding Scenario: 8 flows

Endpoint Scenario: 7 flows

•••

Disable irqbalance

/proc/interrupts

		~]# cat	/proc/inter	rrupts					
	CPU0	CPU1	CPU2	CPU3	CPU4	C PU5	CPU6	CPU7	
θ:	63	g	9	G	G	9	G	G	IO-APIC-edge timer
1:	0	2	0	0	0	0	0	0	IO-APIC-edge 18042
8:	0	1	0	0	0	0	0	0	IO-APIC-edge rtc0
9:	0	0	0	0	0	0	0	0	IO-APIC-fasteoi acpi
12:	0	4	9	0	G	9	G	G	IO-APIC-edge 18042
18:	0	9	64	0	G	9	G	G	IO-APIC 18-fasteoi ehci_hcd:usb3, ehci_hcd:usb4, i801_smbus
19:	0	63	0	0	0	0	0	0	IO-APIC 19-fasteoi xhci-hcd:usb1
24:	0	0	0	0	0	0	0	0	PCI-MSI-edge aerdrv, PCIe PME
25:	0	9	G	G	G	9	G	G	PCI-MSI-edge aerdrv, PCIe PME
26:	0	0	0	G	G	e	G	G	PCI-MSI-edge aerdrv, PCIe PME
27:	0	9	0	0	0	9	0	0	PCI-MSI-edge PCIe PME
28:	0	0	0	0	0	0	0	0	PCI-MSI-edge PCIe PME
29:	0	0	0	0	G	0	0	3387639	PCI-MSI-edge 0000:00:1f.2
30:	0	G	G	31	G	0	3682032	G	PCI-MSI-edge enol
7	0	0	0	G	0	0	G	G	PCI-MSI-edge i40e-0000:01:00.0:misc
32 33	0	5822	0	0	1	0	0	0	PCI-MSI-edge 140e-ens2f0-TxRx-0
33		6124		0	1				PCI-MSI-edge 140e-ens2f0-TxRx-1
34			4937		G	1	G		PCI-MSI-edge i40e-ens2f0-TxRx-2
35:				5160		1	1001	G	PCI-MSI-edge i40e-ens2f0-TxRx-3
36:		311	0		3042		1654		PCI-MSI-edge i40e-ens2f0-TxRx-4
37:		0				5043	1		PCI-MSI-edge 140e-ens2f0-TxRx-5
38			466	2625			2504	1	PCI-MSI-edge 140e-ens2f0-TxRx-6
39		1		G	0			6129	PCI-MSI-edge i40e-ens2f0-TxRx-7
39	0	0	0	0	0	9	0	0	PCI-MSI-edge i40e-0000:01:00.0:fdir-
天:	0	0	0	0	0	0	0	0	PCI-MSI-edge 140e-0000:01:00.1:misc
58	0	0	5835	0	G	1	G	0	PCI-MSI-edge 140e-ens2f1-TxRx-0
59 60: 61:	θ	2		3247	G	2232	989		PCI-MSI-edge i40e-ens2f1-TxRx-1
68 :				4788	0	0	1	0	PCI-MSI-edge i40e-ens2f1-TxRx-2
61:	503		0	0	5960	0	1		PCI-MSI-edge i40e-ens2f1-TxRx-3
62:	0	0	0	0	4534		325	1	PCI-MSI-edge 140e-ens2f1-TxRx-4
63:		1	9	Θ	G	4922	9	G	PCI-MSI-edge i40e-ens2f1-TxRx-5
64	Θ	G	5182	9	0	G	508	G	PCI-MSI-edge i40e-ens2f1-TxRx-6
65	0	0	1	0	0	0	0	5931	PCI-MSI-edge i40e-ens2f1-TxRx-7

/proc/sys/fs/...

Setting	Orig. Value(s)	New Value(s)	Justification
file-max	6563009	65535	maximum number of file- handles that the Linux kernel will allocate.

/proc/sys/net/core/...

Setting	Orig. Value(s)	New Value(s)	Justification
netdev_max_backlo g	1000	300000	Maximum number of packets, queued on INPUT side, when interface receives packets faster than kernel can process them.
somaxconn	128	1024	Limit of socket listen() backlog. Should be raised substantially to support bursts of request.
rmem_max	212992	134217728	Maximum receive socket buffer size (UDP).
wmem_max	212992	134217728	Maximum send socket buffer size (UDP).
rmem_default	212992	134217728	Default setting of the socket receive buffer (UDP).
wmem_default	212992	134217728	Default setting of the socket send buffer (UDP).

/proc/sys/net/core/...

Setting	Orig. Value(s)	New Value(s)	Justification
busy_read	0	0	Low latency busy poll timeout for socket reads
busy_poll	0	0	Low latency busy poll timeout for poll and select
dev_weight	64	4096	Maximum number of packets that kernel can handle on a NAPI interrupt. Per-CPU variable.
netdev_budget	300	4096	Maximum number of packets taken from all interfaces in one polling cycle (NAPI poll).
optmem_max	20480	134217728	Maximum ancillary buffer size allowed per socket.

/proc/sys/net/ipv4/...

Setting	Orig. Value(s)	New Value(s)	Description
ip_local_port_range	32768 60999	1024 65000	Min/Max local port range
tcp_max_syn_backlog	2048	300000	Maximal number of remembered connection requests, which have not received an acknowledgment from connecting client.
tcp_rmem	4096 87380 6291456	4096 87380 67108864	Min/Default/Max size of receive buffer used by TCP sockets.
tcp_wmem	4096 16384 4194304	4096 87380 67108864	Min/Default/Max amount of memory reserved for send buffers for TCP sockets.
udp_mem	1539354 2052472 3078708	4096 87380 67108864	Min/Default/Max pages allowed for queueing by all UDP sockets.

/proc/sys/net/ipv4/...

Setting	Orig. Value(s)	New Value(s)	Description
tcp_sack	1	0	Disable select acknowledgments
tcp_timestamps	1	0	Disable timestamps
tcp_mtu_probing	0	1	TCP Packetization-Layer Path MTU Discovery (only enabled when ICMP black hole detected)
tcp_no_metrics_save	0	0	TCP will cache metrics on closing connections
tcp_fin_timeout	60	30	Length of time an orphaned connection will remain in FIN_WAIT_2 state before it's aborted at local end.
tcp_keepalive_time	7200	60000	How often TCP sends out keepalive messages.

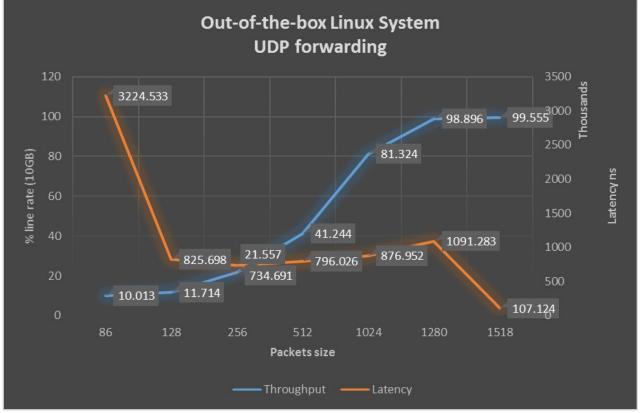
/proc/sys/net/ipv4/...

Setting	Orig. Value(s)	New Value(s)	Description
tcp_keepalive_intvl	75	15000	How frequently the probes are send out.
tcp_window_scaling	1	1	Enable window scaling
tcp_syncookies	1	1	Send out syncookies when syn backlog queue of socket overflows. Prevents 'SYN flood attack'
ip_forward	0	1	Forward Packets between interfaces.
tcp_congestion_control	cubic	tcp_htcp*	optimized congestion control algorithm for high speed networks with high latency

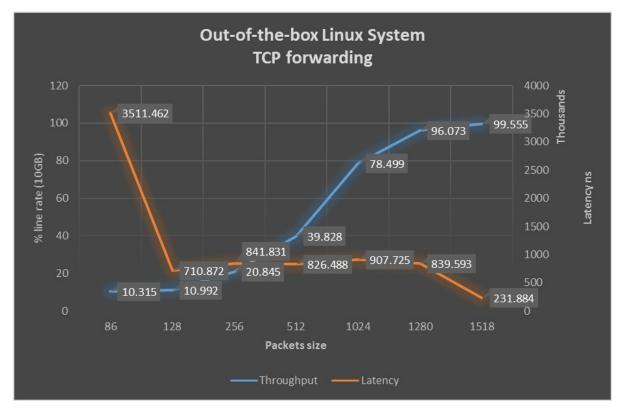
* Tested congestion control algorithms; as of yet we have not discovered which is the most performant. This needs further investigation

ethtool System Configuration

Feature	Orig. Value(s)	New Value(s)	Description
txqueuelen	1000	10000	Modify transmit queue length
-C adaptive-rx -C adaptive-tx	on on	off off	Dynamic control to decrease latency at low packet rates and increase throughput at high packet rates.
-C rx-usecs -C tx-usecs	25 25	25 75	Number of microsecs to wait before raising an interrupt after a packet has been sent.


ethtool System Configuration

Feature	Orig. Value(s)	New Value(s)	Description
-G rx -G tx	4096 4096	4096 4096	Changes number of ring entries
-K [offloading]	on	on	Enable Rx hashing offload, TSO, GRO, GSO, scatter-gather, Checksumming
-K ntuple	on	off	Disable Rx ntuple filters and actions


UDP Forwarding – Out Of the Box

- No BIOS tuning
- Kernel 3.17.4-301.fc21.x86_64
- Fedora 21 default system settings

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

TCP Forwarding – Out Of the Box

- No BIOS tuning
- Kernel 3.17.4-301.fc21.x86_64
- Fedora 21 default system settings

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

perf record / report: Cycle-based Analysis

perf record -a -F 1000 sleep 60

perf report -M intel

Samples:	1M of event	'cycles', Event count	(approx.): 2692315417468
0verhead	Command	Shared Object	Symbol
11.94%	swapper	[kernel.vmlinux]	[k] _raw_spin_lock
4.69%	swapper	[i40e]	[k] i40e_napi_poll
4.02%	swapper	[kernel.vmlinux]	<pre>[k]netif_receive_skb_core</pre>
3.28%	swapper	[kernel.vmlinux]	[k] fib_table_lookup
2.61%	swapper	[kernel.vmlinux]	[k]slab_free
2.12%	swapper	[kernel.vmlinux]	[k] consume_skb
2.08%	swapper	[kernel.vmlinux]	[k] skb_release_data
2.08%	swapper	[i40e]	[k] i40e_lan_xmit_frame
1.90%	swapper	[kernel.vmlinux]	[k] kmem_cache_alloc
1.66%	swapper	[i40e]	[k] i40e_alloc_rx_buffers_1buf

perf report: annotation

cmp	root/.debug/.build-id/0c/be5df5c12d08155c0afdf087a5df6d491873b2 edx,eax
[] je	54
	if (shinfo->frag_list) kfree_skb_list(shinfo->frag_list);
	skb_free_head(skb);
}	
pop	rbx
pop	r12
pop	r13
pop	rbp
ret	
	if (skb->cloned &&
	atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, &shinfo->dataref))
Asias .	return;
	for (i = 0; i < shinfo->nr_frags; i++)
1.17 54: xor	ebx,ebx
cmp	BYTE PTR [r13+0x0],0x0
78.47 mov	r12, rd1
[] je	81
THE SECTION AND ADDRESS	skb_frag_unref(&shinfo->frags[i]);

