
Netdev 1.2 Conference Netdev 1.2 Conference Oct 5-7, 2016; Tokyo, Japan

User Space TCP based on LKL
H.K. Jerry Chu, Yuan Liu, Andreas Abel

Google Inc.

Netdev 1.2 Conference

User-space TCP

● Traditionally, TCP stack in kernel space
● A TCP stack in user space can have advantages w.r.t.

○ μsec level latency performance (demanded by HPC, Wall Street,...)
○ Avoid kernel overhead - but kernel bypass often requires hardware assist

Netdev 1.2 Conference

Cloud use case - terminate guest TCP conns to Google

● Tighter security
● Better isolation

○ Failure containment - single user
process vs the whole kernel

● Release velocity
○ vulnerability can be patched quickly

● Accurate accounting
● Not for high performance (yet)

Internet

VM
Google

GFE

Netdev 1.2 Conference

Existing user-space TCP stacks

● Many home grown user space TCP stacks inside Google
○ Most for specific use cases; fall apart when go beyond limited use

● Need a mature, high quality production-ready TCP stack
○ Interoperability, compatibility, maintainability,..., etc

● Commercial/open-source user-space TCP stacks often for
high performance :

● Mature TCP stacks all kernel-based (Linux, BSD, Solaris,...)

Seastar ...

http://www.seastar-project.org/networking/
http://www.seastar-project.org/networking/

Netdev 1.2 Conference

How to run kernel code in user space?

● VM/hypervisor
● User Mode Linux (UML)
● Rump kernel (BSD)
● Extract only TCP code out of the kernel and stub around it

○ Need to separate code that intertwines with the rest of the kernel
○ Where to draw the boundary? (socket, IP, netdev,...)

○ Replacing interfaces to the rest of the kernel can get hairy (MM,
synchronization, scheduler, IRQs,...)

○ LibOS?

Netdev 1.2 Conference

Linux Kernel Library

● Started by Octavian Purdila
● Designed as a port of Linux kernel

○ arch/lkl (~3500 lines of code)
○ LKL linked with apps to run in user space

● Relies on a set of host-ops provided
by the host OS to function
○ semaphore, pthread, malloc, timer,...

● Well defined external interfaces
○ syscalls, virtio-net

Application

Linux Kernel Networking Stack

Virtio-Net Driver

Virtio-Net Device

Host OS

LKL Syscall API
LKL

LKL Arch

Host Ops

Netdev 1.2 Conference

Main use case - TCP proxy

● Terminates guest packets
● Proxies to a remote service

○ Can run any protocol the host
supports

● May run the proxy remotely
○ Guest packets will be tunnelled

through

Guest OS

Socket

TCP

IP

Virtio-Net
Driver

App
Socket

TCP

IP

Virtio-Net
Driver

Virtio-Net
Device

LKL

Proxy

Host 1

Hypervisor

Virtio-Net
Device

Socket

TCP

IP

Ethernet

Socket

TCP

IP

Ethernet

Host 2

Google
Service

: kernel stack

Netdev 1.2 Conference

Architectural constraints

● App/host thread not recognized by LKL kernel scheduler
○ Can’t enter LKL to execute code directly - must wake up a LKL kernel thread

to perform syscall on its behalf.

● User address allocated by host OS not recognized by LKL
○ syscalls into LKL kernel will fail when invoking address space operation

● no-MMU/FLATMEM architecture (va == pa)
○ No memory protection between app and LKL - both in the same space

● No SMP support
○ Entries into the LKL kernel (syscalls, irqs) must be serialized

Netdev 1.2 Conference

Getting latency down

● Significant latency overhead - three context
switches to run one LKL syscall

● LKL getppid(2) takes 10 μs vs host 0.4 μs
● Solution: create a shadow LKL kernel

thread and let host thread borrow shadow’s
task_struct to execute LKL syscall directly

● Blocking syscall: hack __schedule() to block
the thread on a host semaphore

● getppid(2) down to 0.2 μs

Netdev 1.2 Conference

Networking performance - LKL vs host

● Runs LKL directly on top of NICs
to bypass host kernel altogether

● LKL started at 5-10x slower than
the host stack

Socket

TCP

IP
Virtio-Net

Driver
Virtio-Net

Device

LKL

RDMA
Device

Socket

TCP

IP
Virtio-Net

Driver
Virtio-Net

Device

LKL

RDMA
Device

Host 1

App

Host 2

App

Ethernet (40Gbps)

Netdev 1.2 Conference

Latency comparison against kernel stack

● 1-byte TCP_RR
● host stack baseline - 23 μs
● LKL busy poll - 33 μs (1.4X)
● w/o busy poll - 40 μs (1.8X)
● Gap to host: no hardware

IRQ

Netdev 1.2 Conference

Boosting bulk data throughput

● Simple formula -> Large segments + csum offload
● GSO & GRO support already part of the kernel

○ LKL GSO alone doubles the thruput (one line change in virtio-net device
code)

● GUEST/HOST_TSO requires virtio-net device support
● All flavors of offloads were added to LKL (incl. both

“large-packet” and “mergeable-RX-buffer” modes)

Netdev 1.2 Conference

Thruput comparison against kernel stack

● LKL gets ~5x boost from
the offload support

● Removing copy in virtio-net
gets LKL within 75% of host

● LKL saturates ~1 CPU vs
only 50% for the host

● LKL costs ~2.5x CPU
cycles compared to host

Netdev 1.2 Conference

Reducing copy overhead

● Copy is the simplest
mechanism to move data

● But burns lots of CPU cycles
(after offloads enabled)
○ ~30% CPU for TCP proxy

● Six copy operations for each
byte transferred in TCP proxy

Guest OS

Socket

TCP

IP

Virtio-Net
Driver

App
Socket

TCP

IP

Virtio-Net
Driver

Virtio-Net
Device

LKL

Proxy

Socket

TCP

IP

Host 1

Hypervisor

Virtio-Net
Device

Ethernet

Socket

TCP

IP

Ethernet

Host 2

Google
Service

six copies!

Netdev 1.2 Conference

Zero-copy sockets - TX

● Same addr space & protection domain for user & LKL kernel
○ But kernel tracks physical pages (e.g., skb_frag_t) so not much easier (still

needs to use API like vmsplice(2))

● Host allocated user address not recognized by LKL kernel
○ Syscalls involving addr space operation (e.g., vmsplice(2)) will fail
○ Solution - call LKL mmap(MAP_ANONYMOUS) to allocate buffer

● LKL needs to notify user when is safe to reuse a buffer
○ Has to ensure buffer not just ack’ed, but also freed to avoid security hole
○ Patches exist from willemb@google.com

Netdev 1.2 Conference

Zero-copy socket - RX

● Returns skb from sk_receive_queue to the app directly
● App extracts data addresses from skb, e.g., use

page_address() to convert struct page to pa (== va)
● App needs to deal with iovec of possibly odd size/unaligned

buffers unfortunately (especially for “mergeable-RX-buffer”)
● Call back to LKL to free skb
● Changes to kernel code outside of arch/lkl
● Still WIP

Netdev 1.2 Conference

Configuration/diagnosis tools

● Since LKL has all the kernel code, can we make various
net-tools (ifconfig/ethtool/netstat/tcpdump/…) work?

● Constrained by a single process LKL is bounded
● A simple facility was added to spawn a thread providing a

cmdline to mount procfs, sysfs, and retrieve counters,
modify tunables,..., etc

● General solution - hijack syscalls from net-tools and execute
in a remote LKL process, like sysproxy in rump

Netdev 1.2 Conference

Questions?

Netdev 1.2 Conference

Backup Slides

Netdev 1.2 Conference

Testing configuration - tuntap to host kernel

● Easy to setup
● Packet injection to/from the host

kernel can be expensive hence
not good for production use

● Best for debugging or regression
test purpose

Socket

TCP

IP
Virtio-Net

Driver
Virtio-Net

Device

LKL

TAP
Device

Socket

TCP

IP

App AppHost

Host kernel

Netdev 1.2 Conference

Thruput for a local TCP proxy

● All offloads enabled on the
guest side

● LKL GSO alone doubles the
thruput (one line change in
virtio-net device code)

● Optimal performance -
large segment end-to-end
w/o any csum calculation

Netdev 1.2 Conference

Dynamic Linker

● Loads shared libraries needed by an executable at run time
● Performs any necessary relocations
● Calls initialization functions provided by the dependencies
● Passes control to the application
● Kernel code compiled as shared library exposed to these

bugs

Netdev 1.2 Conference

Linker/loader bugs

Netdev 1.2 Conference

TEXTREL (relocation in the text segment)

● Shared library containing TEXTRELs can’t be
shared anymore

● Text segment needs to be made writable -
security issue (e.g., forbidden by SELinux)

● Android 6 does not support binaries with
TEXTRELs.

readelf -d:

