Google
User Space TCP based on LKL
H.K. Jerry Chu, Yuan Liu, Andreas Abel

Google Inc.

Netdev 1.2 Conference Oct 5-7, 2016; Tokyo, Japan

User-space TCP

e Traditionally, TCP stack in kernel space

e A TCP stack in user space can have advantages w.r.t.

o psec level latency performance (demanded by HPC, Wall Street,...)
o Avoid kernel overhead - but kernel bypass often requires hardware assist

KERNEL SPACE USER SPACE

Google Netdev 1.2 Conference

Cloud use case - terminate guest TCP conns to Google

e Tighter security
e Betterisolation

o Failure containment - single user
process vs the whole kernel

e Release velocity

vl

O vulnerability can be patched quickly
e Accurate accounting
e Not for high performance (yet)

Google Netdev 1.2 Conference

Existing user-space TCP stacks

Many home grown user space TCP stacks inside Google
o Most for specific use cases; fall apart when go beyond limited use

Need a mature, high quality production-ready TCP stack

o Interoperability, compatibility, maintainability,..., etc
Commercial/open-source user-space TCP stacks often for

high performance :
P Jpen libuinet Seastar

Mature TCP stacks all kernel-based (Linux, BSD, Solaris,...)

Netdev 1.2 Conference

http://www.seastar-project.org/networking/
http://www.seastar-project.org/networking/

Google

How to run kernel code in user space?

VM/hypervisor

User Mode Linux (UML)

Rump kernel (BSD)

Extract only TCP code out of the kernel and stub around it

©)

©)

O

Need to separate code that intertwines with the rest of the kernel
Where to draw the boundary? (socket, IP, netdev,...)

Replacing interfaces to the rest of the kernel can get hairy (MM,

synchronization, scheduler, IRQs,...)
LibOS?

Netdev 1.2 Conference

Linux Kernel Library

Host OS

e Started by Octavian Purdila
e Designed as a port of Linux kernel

o arch/lkl (~3500 lines of code)

o LKL linked with apps to run in user space

e Relies on a set of host-ops provided
by the host OS to function
o semaphore, pthread, malloc, timer,... ’

e Well defined external interfaces |
o syscalls, virtio-net " [wostops

, [Application J

Google Netdev 1.2 Conference

Main use case - TCP proxy

e Terminates guest packets
e Proxies to a remote service

o Can run any protocol the host
supports

e May run the proxy remotely

o Guest packets will be tunnelled
through

Google

Host 1
Hypervisor Ve N
Proxy
Guest OS
LKL
A
o Socket
TCP
Socket
IP
TCP
Virtio-Net
P Driver
Virtio-Net
Virtio-Net Device
Driver \)
Virtio-Net
Device

Socket

TCP

P

Ethernet

Google
Service

Socket

TCP

IP

Ethernet

Netdev 1.2 Conference

Architectural constraints

App/host thread not recognized by LKL kernel scheduler
o Can't enter LKL to execute code directly - must wake up a LKL kernel thread
to perform syscall on its behalf.

User address allocated by host OS not recognized by LKL

o syscalls into LKL kernel will fail when invoking address space operation

no-MMU/FLATMEM architecture (va == pa)

o No memory protection between app and LKL - both in the same space

No SMP support

o Entries into the LKL kernel (syscalls, irgs) must be serialized

Netdev 1.2 Conference

Getting latency down

e Significant latency overhead - three context
switches to run one LKL syscall

o LKL getppid(2) takes 10 ps vs host 0.4 ps

e Solution: create a shadow LKL kernel
thread and let host thread borrow shadow’s
task_struct to execute LKL syscall directly

e Blocking syscall: hack __schedule() to block
the thread on a host semaphore

e getppid(2) downto 0.2 us

Google

Host Thread

LKL

Kernel Thread
Serving IRQ

LKL Kernel Syscall Thread

LKL IRQ

Wake Up

Wake Up

»
»

Host Thread

LKL

Kernel Thread
Serving IRQ

LKL Kernel Syscall Thread

Netdev 1.2 Conference

Networking performance - LKL vs host

e Runs LKL directly on top of NICs
to bypass host kernel altogether
e LKL started at 5-10x slower than

the host stack L
! Driver ! | Driver

e | e

Ethernet (40Gbps)

Google Netdev 1.2 Conference

Latency comparison against kernel stack

1-byte TCP_RR
host stack baseline-23 ps ... -
LKL busy poll - 33 ps (1.4X) ==

pin LKL

w/o busy poll - 40 ps (1.8X) ...
Gap to host: no hardware =~

ssssssss

IRQ : | ! [

Latency (us)

Google Netdev 1.2 Conference

Boosting bulk data throughput

e Simple formula -> Large segments + csum offload
e GSO & GRO support already part of the kernel

o LKL GSO alone doubles the thruput (one line change in virtio-net device
code)

e GUEST/HOST_TSO requires virtio-net device support
e All flavors of offloads were added to LKL (incl. both
“large-packet” and “mergeable-RX-buffer” modes)

Google Netdev 1.2 Conference

Thruput comparison against kernel stack

¢ LKL gets ~5X bOOSt from Single TCP_STREAM over 40Gbps RoCE
the offload support S
e Removing copy in virtio-net .
gets LKL within 75% of host "o
e |KL saturates ~1 CPU vs 2o oy vito
only 50% for the host
e LKL costs ~2.5x CPU
cycles compared to host

lkernel stack

Google Netdev 1.2 Conference

Google

Reducing copy overhead

Copy is the simplest
mechanism to move data
But burns lots of CPU cycles

(after offloads enabled)
o ~30% CPU for TCP proxy

Six copy operations for each
byte transferred in TCP proxy |

=~
~

-

Google
Service

cket

TCP

IP

Ethernet

Host 1
Hypervisor Ve N
Proxy
Guest OS
LKL
A
o SocT\et
¢ 7y
TCP\ Socket
Sock
P TCP
TCP
Virtio-Net
Driver
IP
\ Virtio-Net
Virtio-Net | Device
Driver
_ 3 kk AN
Virtio-Net
Device

Netdev 1.2 Conference

Zero-copy sockets - TX

e Same addr space & protection domain for user & LKL kernel
o But kernel tracks physical pages (e.g., skb_frag_t) so not much easier (still
needs to use API like vmsplice(2))

e Host allocated user address not recognized by LKL kernel

o Syscalls involving addr space operation (e.g., vmsplice(2)) will fail
o Solution - call LKL mmap(MAP_ANONYMOUS) to allocate buffer

e LKL needs to notify user when is safe to reuse a buffer

o Has to ensure buffer not just ack’ed, but also freed to avoid security hole
o Patches exist from willemb@google.com

Google Netdev 1.2 Conference

Zero-copy socket - RX

e Returns skb from sk_receive_queue to the app directly

e App extracts data addresses from skb, e.g., use
page_address() to convert struct page to pa (== va)

e App needs to deal with iovec of possibly odd size/unaligned
buffers unfortunately (especially for “mergeable-RX-buffer”)

e Call back to LKL to free skb

e Changes to kernel code outside of arch/Ikl

o Still WIP

Google Netdev 1.2 Conference

Configuration/diagnosis tools

e Since LKL has all the kernel code, can we make various
net-tools (ifconfig/ethtool/netstat/tcpdump/...) work?

e Constrained by a single process LKL is bounded

e A simple facility was added to spawn a thread providing a
cmdline to mount procfs, sysfs, and retrieve counters,
modify tunables,..., etc

e General solution - hijack syscalls from net-tools and execute
in a remote LKL process, like sysproxy in rump

Google Netdev 1.2 Conference

Questions?

P

Backup Slides

Google Netdev 1.2 Conference

Testing configuration - tuntap to host kernel

e FEasy to setup ;o
e Packet injection to/from the host
kernel can be expensive hence

not good for production use
. .

e Best for debugging or regression
test purpose

Socket

Google Netdev 1.2 Conference

Thruput for a local TCP proxy

e All offloads enabled on the
guest side ——
e LKL GSO alone doubles the twei =
thruput (one line change in s
virtio-net device code)
e Optimal performance -
large segment end-to-end
w/0 any csum calculation

Bulk data throughput (Gbps)

csum offload

large segments

Google Netdev 1.2 Conference

Dynamic Linker

Loads shared libraries needed by an executable at run time
Performs any necessary relocations

Calls initialization functions provided by the dependencies
Passes control to the application

Kernel code compiled as shared library exposed to these
bugs

Google Netdev 1.2 Conference

#include <1kl.h=
#include <stdio.h=

int foo_wl (void) { return 1; }
vold * T _choice (void) {

return foo_vi;

}

int foo (void) __attribute ((ifunc {"f_choice™)));

int main{}) {
printf("vfpvkdin", foo());
volatile int b = 0;
if (b} {
{/ never executed
1kl syscall(0, 0);
I

return 0;

Google

Linker/loader bugs

aabel@aabel0: ~/bug

File Edit View Search Terminal Help
aabel@aabel®:~/bug$./main
Segmentation fault (core dumped)
aabel@aabelo:~/bugs I

Netdev 1.2 Conference

TEXTREL (relocation in the text segment)

readelf -d:

I aabel@aabel0: ~/bug

File Edit View Search Terminal Help

9x000000000000000C (INIT) 0x2778

0x000000000000008d (FINI) 0x13864

9x0000000000000016 (TEXTREL) 0xe M H H)
0x000000000000001e (FLAGS) TEXTREL BIND_NOW o Shared |Ibrary Contalnlng TEXTRELS Can t be
0x000000006FFFFffb (FLAGS_1) Flags: NOW

oxe0e000006FFFFFfe (VERSYM) 0x9do

0x000000006FFffffe (VERNEED) Oxaz28 Shared anymore

ox000000006FFFFFFf (VERNEEDNUM) 3
0x0000000000000000 (NULL) ox0

asbelgasbelo:-/bugs e Text segment needs to be made writable -
security issue (e.g., forbidden by SELinux)
& e Android 6 does not support binaries with
. TEXTRELS.

Google Netdev 1.2 Conference

