
Distributed Switch Architecture,
A.K.A. DSA

1st Andrew Lunn, 2nd Vivien Didelot, 3th Florian Fainelli
1andrew@lunn.ch, 2vivien.didelot@savoirfairelinux.com, 3f.fainelli@gmail.com

Abstract
The Distributed Switch Architecture was first introduced to
Linux nearly 10 years ago. After being mostly quiet for 6
years, it recently became actively worked on again by a group
of tenacious contributors.
In this paper, we will cover its design goals and paradigms and
why they make it a good fit for supporting small home/office
routers and switches. We will also cover the work that was
done over the past 4 years, the relationship with switchdev and
the networking stack, and finally give a heads-up on the up-
coming developments to be expected.

Keywords
DSA, Distributed Switch Architecture, Linux kernel network
stack, SOHO switches, switchdev.

Introduction
Distributed Switch Architecture is a Marvell SOHO switch
term. However, as is often the case with the Linux Kernel,
the code to support it has been generalised, and now supports
a number of different vendors Ethernet switches.

The basic hardware configuration for DSA is shown in Fig-
ure 1. The Ethernet switch has one port dedicated to passing
Ethernet frames to/from the CPU, port 8 in the figure. This
port is connected to an Ethernet controller of the CPU acting
as the management interface. The CPU’s Ethernet controller
is referred to as the ’master’ interface, while the switch port is
referred to as the ’cpu’ port. The remaining switch ports are
user ports. DSA provides a Linux network interface for these
user ports, known as ’slave’ interfaces. The slave interfaces
are standard Linux network inferfaces, as shown in figure 2,
from the ZII devel B board. eth1 is the ’master’ interface,
and the ’slave’ interfaces are lan* and optical*.

Overall, this forms the data plane.
The Ethernet switch is also connected to the CPU via a

management interface. Often this is MDIO, but can also be
I2C, SPI, or memory mapped. The management interface is
used to configure the switch, retrieve status and access statis-
tics counters.

Ports 0 to 2 of the switch connect directly to RJ45 con-
nectors. In this case, the Ethernet PHY is embedded within
the switch, and managed via the switch management inter-
face. Typically this is achieved via the switch having an inter-
nal MDIO bus, and exporting registers to control this MDIO

Ethernet switch

Ethernet controller

Port 0

Port 1

Port 2

Port 8

Port 3

Port 4

Port 5

I2C controller

MDIO controller

SPI controller

RJ45

RJ45

RJ45

FiberRJ45

RGMII

CPU

DRAM

RGMII RJ45

RJ45

Data path

Control path

Figure 1: The Basic DSA setup

bus. The DSA software framework exports this MDIO bus
to Linux as a normal MDIO bus. Thus the PHYs on the bus
can be probed, the existing Linux PHY drivers used, and the
PHYs associated to the Linux slave interfaces representing
the switch ports.

Port 3 shows a Fiber interface. Typically this is controlled
and monitored via I2C, and would be connected to the hosts
I2C controller. Again, this Fiber module is associated to
the slave interface and can be managed using standard Linux
tools.

Lastly, ports 4 and 5 use external PHYs, connected via
RGMII to the switch. Either the PHYs are managed via the
switches own MDIO bus, as used by the internal PHYs, or
they can be connected to the CPUs MDIO bus. As with the in-
ternal PHYs, Linux can manage the external PHYs and asso-
ciate them to the Linux slave interface representing the switch
ports.

Overall, this forms the control plane.
DSA is however not limited to a single switch. Figure

3 shows an architecture of multiple switches connected to-
gether. This is the D in DSA, a distributed switch fabric.
Currently, Linux only supports Marvell switches in this con-
figuration, however the concept is generic, so other switch

ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether ec:fa:aa:01:12:fe brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
4: lan0@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
5: lan1@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
6: lan2@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether ce:00:11:22:33:44 brd ff:ff:ff:ff:ff:ff
7: lan3@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
8: lan4@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
9: lan5@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
10: lan6@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
11: lan7@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
12: lan8@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
13: optical3@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff
14: optical4@eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state LOWERLAYERDOWN mode DEFAULT group default qlen 1000

link/ether 06:34:73:83:15:6b brd ff:ff:ff:ff:ff:ff

Figure 2: Standard and DSA Network interfaces

vendors featuring cascaded switches should be supportable.

Switch 2

Switch 1

Switch 0

Ethernet MAC

CPU

MDIO controller

cpu

dsa

dsa dsa

eth0

sw0p1

dsa

sw0p1

sw0p2

sw0p3

sw0p4 sw0p5

sw1p0

sw1p1 sw1p2

sw2p0

sw2p1

sw2p0

sw2p2 sw2p3 sw2p4

Marvell tagged frames

User frames (normal, 802.1q)

Control interface (MDIO, SPI, I2C..)

Figure 3: The D in DSA setup

Again, one switch is connected to the CPU via an Ether-
net controller to form the data plane between the CPU and
the switches. This port is referred to as the ’cpu’ port. And
there is a management plane via MDIO, or SPI, I2C, MMIO.
However, the data plane is extended to the cascaded switches
via the ’dsa’ ports. These ports are used to connect switches
together, so that frames can be passed between switches, or
forwarded to the CPU via its Ethernet controller. The man-
agement plane is extended, in that each switch is connected
to the management plane. Note that ’dsa’ ports are not visible
to the user as normal network devices.

The distributed nature of the switch is hidden from the
user. Only a collection of Linux network interfaces are seen.
Figure 2 illustrates this, in that the board actually has three

switches.
The key concept for DSA, which differentiates DSA from

pure switchdev supported switches is a port connected to an
Ethernet controller to form the data plane. Later sections de-
scribe this, and the relationship between DSA and switchdev,
in more detail. In contrast, on top-of-the rack switches that
switchdev typically supports, each switch port may have its
own DMA-capable Ethernet MAC to send/receive frames
to/from the CPU acting as a management interface.

User of DSA
Users of DSA fall into two main categories.

WiFi Access Points/Routers and Set-Top Boxes
Probably the most obvious use of DSA is in set-top boxes,
and WiFi access points/routers. These typically have 5 Eth-
ernet ports on the back, often labeled WAN and LAN 1-4.
Figure 4 is an annotated image of the Netgear WNR854T,
which contains a Marvell 8 Port Ethernet switch. Figure 5 is
a BCM97445VMS board with an external BCM53125 switch
at the top-left with a 4-RJ45 connector.

Industrial Switches/Routers
There have been a number of contributions to DSA drivers
from industrial switch/router vendors from the transport in-
dustry. DSA has been flying in aircraft inflight entertainment
(IFE) systems for a number of years. Busses and trains are be-
coming more networked, in order to provide passenger infor-
mation systems, with DSA being used in the network equip-
ment. Figures 6 and 7 show a couple of example devices.

History
DSA is not a new subsystem in the Linux kernel. It was added
in 2008, with support for a limited number of Marvell SOHO
switches (Linkstreet product line). However, after the ini-
tial contribution, development was dormant, as can be seen

Figure 4: Annotated WRN854T WiFi Access Point, image
from OpenWrt

in Figure 8, which shows the number of lines changed per
month, between 2008 and the end of 2016.

From 2008 to the middle of 2014, the changes are those
typical for maintenance churn, caused by changing internal
kernel APIs. No new features or devices were added during
this time.

From the end of 2014, development recommenced, as part
of the Linux networking push to support hardware offloads
and network switches. In 2014 Broadcom added support for
their Starfighter 2 switch. Often switches features can be con-
figured via an EEPROM. Linux network interfaces already
support this concept, and it was extended to support access to
switch EEPROMs. Some switches contain temperature sen-
sors, so infrastructure was added to export these sensors via
the HWMON subsystem. Modern switches implement En-
ergy Efficient Ethernet, a mechanism to save power on idle
interfaces. The extending kernel support was extended to
switch ports. Wake-on-LAN support was also added, fol-
lowing the standard abstractions. As described in the intro-
duction, switch ports have Ethernet PHYs. The phylib was
better integrated into DSA. Lastly, a new Marvell family of
switches, the 88E6352 was added in 2014.

Development continued in 2015 adding a device tree bind-
ing. Up until then, only platform data could be used to de-
scribe the hardware architecture. This was the time that ARM
platforms swapped to using device tree, and most boards us-
ing DSA are ARM based. A major new feature was mak-
ing use of the switch hardware to perform bridging between
ports. Up until then, the ports simply forwarded all frames to
the CPU, and the CPU performed bridging, if configured and
required. This was the first step in using the switch hardware
as an accelerator, not just a port multiplexer.

In 2016 the limitations of the original architecture became

Figure 5: Broadcom BCM97445VMS Board with an
BCM53125 Switch at the top-left

Figure 6: Netmodules transport router

a major problem for supporting switches which were not
managed via MDIO. Refactoring work was performed to rep-
resent switches as Linux devices, and to abstract out the com-
munication mechanism used to the switch. It then became
possible to use SPI, I2C, or MMIO for the control plane. As
a result, a new device tree binding was needed. This refac-
toring opened up a path for the Broadcom B53 driver, which
drives devices using SPI and MMIO. 2016 also sore the addi-
tion of a driver for the Qualcom QCA8K switch, and a further
Marvell switch family, the 88E6240.

Development work has continued in 2017, with another
Marvell switch family, the 88E6390, the second genera-
tion Starfighter 2, and initial contributions for the Mediatek
MT7623. Additionally, more acceleration support is being
added with the support for port mirroring and some TC of-
floads.

As the history as shown, DSA tries to make use of the ex-
isting kernel abstractions and infrastructure where possible.

Alternative Approaches
Despite its long history in the kernel, DSA is not the only
way to manage Ethernet switches in WiFi access points and
STBs. A number of other solutions have been deployed in a
wide range of products.

Figure 7: IFE aircraft switch

2
0
0
8
-1

1

2
0
0
9
-0

2

2
0
0
9
-0

7

2
0
1
0
-0

4

2
0
1
0
-1

2

2
0
1
1
-0

4

2
0
1
1
-0

8

2
0
1
2
-0

5

2
0
1
3
-0

1

2
0
1
4
-0

1

2
0
1
4
-0

6

2
0
1
4
-0

9

2
0
1
4
-1

2

2
0
1
5
-0

3

2
0
1
5
-0

6

2
0
1
5
-0

9

2
0
1
5
-1

2

2
0
1
6
-0

3

2
0
1
6
-0

6

2
0
1
6
-0

9

2
0
1
6
-1

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

DSA Activity

Year, Month

L
in

e
s
 C

h
a

n
g
e
d

Figure 8: DSA development activity, in terms of lines
changed per month

swconfig
OpenWrt/LEDE has an alternative solution, known as swcon-
fig.

DSA makes use of additional tagging headers in order to
direct frames in/out of specific ports of the switch. swconfig
instead uses VLAN tags for traffic segregation. This allows
swconfig to support a wider range of switches, since most
switches support VLANs, however fewer switches support
tagging headers. At the time swconfig was developed, DSA
was incorrectly considered to be a Marvell only solution and
limited to an MDIO control plane. swconfig does not have
such restrictions. Note that since then, it has also been iden-
tified that DSA could utilize VLAN tags as the most basic
form of traffic segregation in case a switch does not support
additional tagging.

The swconfig solution does not make use of the Linux net-
work interface abstraction. The ports of the switch are not
represented as network interfaces. This goes against the com-
munities decision that switch ports should be seen as stan-
dard Linux interfaces. However, it can be argued for the
OpenWrt/LEDE use cases, this not so important. WiFi ac-

cess points typically just want to bridge all the ports. There
are few use cases for using the ports individually.

swconfig uses a generic netlink based configuration mech-
anism, with a base set of options and then device specific ex-
tensions. These extensions have however resulted in incon-
sistency across device drivers. Most often this inconsistency
is not noticeable to the end-user because the configuration
of devices is already abstracted in OpenWrt/LEDE thanks
to UCI (Universal Configuration Interface). This abstraction
would take a standard syntax and transform it into appropriate
swconfig calls towards the specific switch driver.

swconfig was proposed [1] as a solution for mainline in
2013. The discussion around it and its rejection was one of
the starting points to the development of the switchdev frame-
work.

There are a number of other of solutions, none of which
should get anywhere near mainline.

• SoC Vendors have hacked together quick-n-dirty /proc,
/sys/, debugfs or ioctl() APIs for configuring switches.

• Vendor specific and proprietary switch SDKs run in
userspace, with a small kernel driver to export register ac-
cess.

• The bootloader configures the switch and it is never
touched again!

The Switch as a Hardware Accelerator
When swconfig was rejected, there was a number of different
ideas how Ethernet switches, and other network accelerators
should be modeled. In 2014, during a number of conference
corridor side discussions, the current solution was decided
upon. The solution is simple: keep the standard Linux net-
work interface abstractions. The consequences of this deci-
sion can be summarized in a few points:

• Switch ports are modeled as Linux network Interfaces.

• Confusing to some, switch ports don’t switch traffic by de-
fault.

• Standard Linux tools are used to configure these interfaces,
e.g. ip(8) and ifconfig(8).

• The Linux bridge abstraction is used for bridging inter-
faces, e.g. ip(8), bridge(8) and brctrl(8).

• Linux team/bonding abstraction used for trunking switch
ports.

• Ethernet PHYs on switch ports are normal Linux PHYs.

• Port statistics follow the normal abstraction provided by
ethtool(8).

As a result, we use the switch hardware to accelerate what
Linux can already do with a collection of software interfaces.

The Data Plane
The data plane deals with getting Ethernet frames to/from
Linux in/out of the ports of the switch. And it is required
that frames can be addressed to specific ports, even when the
ports are bridged together. E.g. Bridge PDUs must go out
specific ports of the bridge.

The majority of this code in the data plane is generic, inde-
pendent of the switch being used.

MAC DA MAC SA Ether type Payload FCS

MAC DA MAC SA Ether type Payload FCSSwitch tag

Source portMetadataEgress type

Destination portsMetadataIngress type

Normal Ethernet frame

Ingress tagged (CPU towards switch) frame

MAC DA MAC SA Ether type Payload FCSSwitch tag

Egress tagged (switch towards CPU) frame

Figure 9: DSA Switch Tags

Frames sent from the CPU to the switch are tagged with
an additional header, as shown in figure 9. The top frame
in the figure is that passed to a slave interface by the Linux
network stack. The bottom frame is that which egresses the
master interface, the CPU network controller, and ingresses to
the switch. The switch tag, which is generally added after the
source MAC address, is used to direct the frame out a specific
vector of ports of the switch. Additionally, when there are
multiple switches, it indicates which switch the egress port
belongs to. The tag indicates if this is an ingress or egress
frame, relative to the switch. The metadata varies between
tagging protocols, but can for example indicate the presence
of a VLAN tag within the switch tag, the CFI, or the frame
priority.

Frames which egress the switch to the CPU Ethernet con-
troller have a similar switch tag. The metadata may indicate
why the switch egressed the frame to the CPU. The source
port indicates the ingress port of the switch, and when there
are multiple switches, which switch the ingress port belongs
to.

Figure 10 shows a wireshark dissection of an Ethernet
frame with a Marvell EDSA tag. The NTP frame is being
sent by the CPU to egress port 3 of switch 0.

DSA has a number of protocol taggers to insert/remove the
switch tags. Currently there are taggers for Marvell DSA and
EDSA, Broadcom, Qualcom, and the Mediatek tagger is un-
der review.

Figure 11 shows how these tagging protocols are used.
The frame from the switch is received by the

CPU’s Ethernet controller, and the driver calls
netif_receive_skb() to pass the frame to the
network stack in the normal way. eth_type_trans()
is called to determine the Ether Type of the frame. As
part of eth_type_trans(), a check is made to see
if the ingress interface is a DSA master interface, i.e.
netdev_uses_dsa(). If so, tagged frames are expected.
The tag protocol receiver function is then invoked on the

Figure 10: Marvell ESDA tag shown in Wireshark

Network driver
RX path

skb�dev =
eth0

netif_receive_skb()

eth_type_trans()

netdev_uses_dsa()
?

ip_rcv()

XX_tag_rcv()

Switch port valid
?

skb�dev =
sw0p0

Driver/HW layer Layer agnostic

Ethernet layer

Layer 3

DSA tag layer

Discard

Yes

Yes

No

No

Figure 11: Processing the Switch Tag

frame. This extracts the information from the tag, and then
removes the tag from the frame. If the switch ingress port is
valid, the DSA slave interface is determined, and the ingress
interface is updated in the skb to point to the slave device.
The frame is then again passed to the network stack using
netif_receive_skb(). This time the true Ether Type
can be extracted from the frame, and the frame is passed on
for IP processing, etc.

The transmit path is similar. The slaves transmit function
invokes the tagger transmit function. It inserts the switch
tag, and then calls the master interface’s transmit function via
dev_queue_xmit().

This way of popping or pushing the switch tag is com-
pletely standard and uses Linux’s way of dealing with a stack
of devices on top of each other.

Control Plane

The control plane for switches in the DSA framework makes
use of switchdev to interface with the Linux network stack’s
control plane.

switchdev
switchdev is a stateless framework within the kernel stack
which lives under net/switchdev. It provides the needed
control knobs within the network stack’s control plane to
push tasks which can be offloaded down to the hardware. It
does this by offering a number of switchdev_ops, which
switch-like devices can implement. Examples of this are
adding/removing a VLAN to a port, adding/removing a for-
warding database entry to a port, changing the spanning tree
protocol state of a port, etc. In order to support the diverse
ways VLANs, forwarding database entries, etc. can be repre-
sented in hardware, switchdev provides an abstract model of
these objects. It is the responsibility of the ops implementer
to translate the abstract representation into a concrete repre-
sentation needed by the switch.

switchdev is not a driver model. It does not define what a
switch is. It just defines operations that switch-like devices
may implement. This makes the API flexible to a wide range
of hardware. The main user of this API is switches, but it
can also be used with Ethernet controllers with SRIOV VF
functionality, etc.

Additionally, switchdev is not involved in the data plane,
only at the control plane level.

In Summary, switchdev is an abstraction the network stack
uses to offload tasks down to the underlying hardware.

DSA vs. switchdev in the Control Plane
The DSA core framework lives under net/dsa, with the
device drivers in driver/net/dsa. Unlike switchdev,
DSA maintains a little state. However, it aims to keep as
much state as possible within the switch, not the driver. DSA
provides an abstract model of a switch. Each switch has a
dsa_switch structure to represent it. The dsa_switch
structure contains a list of operations, dsa_switch_ops
which can be performed on the switch. In order to support the
D in DSA, a collection of switches in a tree are represented
by a dsa_swith_tree. And going the other way in the
hierarchy, each dsa_switch has a number of dsa_port
structures to represent each port of the switch.

Given the abstract model of a switch, DSA binds
the switch to the Linux network stack, by implement-
ing the netdev_ops and ethtool_ops, using the
dsa_switch_ops to call into the switch driver. Addition-
ally, DSA implements the switchdev_ops by again call-
ing into the switch driver via dsa_switch_ops.

DSA also provides a well defined device tree binding to
describe the switch ports, their names, their connection to an
internal/external PHY, and how they are interconnected in a
D in DSA system.

In summary, DSA provides the glue between the network
stack and the switch device drivers.

Future Development Work
DSA is not complete. In fact, there is a lot left to do, when
comparing the features supported by DSA with the ones sup-
ported by switchdev devices like the Mellanox mlxsw [2].
The bottleneck is the availability of developers to implement
these features, not the framework itself.

It is hoped the following features will appear during 2017.

• Merge the Mediatek driver. This driver is currently under
review and might be merged before this paper is even pre-
sented!

• Add support for Microchip devices. Microchip is working
on a driver and hope to contribute it soon.

• Multiple CPU ports. Some WiFi access points have two
ports connected to CPU Ethernet controllers, in order to
increase the bandwidth between the CPU and the switch.
However, DSA currently is limited to a single CPU Eth-
ernet controller. The vendor firmware configures one of
the two CPU interfaces and the switch in a straight though
manor, to implement the WAN port of the device. Al-
though simple, it potentially does not make the best use
of the available bandwidth. The tagging headers already
guarantee traffic segregation, so there is no need to ded-
icate a CPU Ethernet controller to the WAN port. DSA
will be extended to allow multiple CPU ports to be defined,
and where possible, implement basic load balancing across
these CPU ports. Each CPU ports will send traffic to a sub-
set of the switches ports.

• IGMP snooping. Currently, all multicast traffic is flooded
to all interfaces with the switch. However, these switches
have the ability to detect IGMP packets and direct them to
the CPU. The Linux bridge already supports IGMP snoop-
ing, so feeding these IGMP packets to the bridge will al-
low the bridge to decide which interfaces multicast frames
should egress, and which interfaces have no interest in the
multicast frames and can be blocked. By implementing the
needed switchdev callbacks, this knowledge can be pushed
down into the switch to control the flooding. This is partic-
ularly important when the CPU is low powered, aimed at
simply managing the switch. It has no interest in the mul-
ticast data itself, and a high volume of multicast traffic can
overload it.

• Better D in DSA for Marvell switches. Currently, the dis-
tributed part of DSA is primitive. The support for VLANs
spanning multiple switches is limited. Bridges spanning
multiple bridges may leak frames, etc. Work is in progress
to improve this.

• Better support for Fiber interfaces. SFP modules are being
seen on consumer devices, and industrial routes often have
SFP modules.

• Improved automated testing using open source software
(Ostinato) [3]

There are also some more long term goals.

• Team/Bonding support.
• TCAM support to offload parts of the firewall.
• Qualcom Hardware NAT.
• Metering, broadcast storm suppression.
• More TC support for QoS priorities and maps and other

offloads.

It would also be good to have more vendor endorsed de-
velopment. We are already in a good position with 4 vendors

supporting their own devices. But there are more vendors and
devices out there. It does however seem that switch vendors
are now realizing that to be part of the Linux kernel, they have
to use switchdev, and where appropriate, DSA.

Conclusions
DSA is now a mature and working subsystem which has re-
ceived support from a fair amount of contributors actively
using it in existing products. Although there is still a long
way to go in terms of feature completeness regarding what
existing Ethernet switches can do, the fundamental paradigm
that a switch port should be a Linux network device has been
proven successful.

DSA benefits from working on a product space that is today
largely mature and receives little radical changes that would
require a complete redesign. The latest major change was in
the device driver model aspect and has since opened the door
to supporting many more devices. Having to support such de-
vices allows developers to focus on bringing additional fea-
tures into what Linux can already do, and therefore pushing
for better integration of offloads.

Ultimately, the goals of getting a device supported in Linux
is to get finer and better control over what existing WiFi ac-
cess points/routers and other Linux based network products
can do. Better control allows building reliable, scalable and
sustainable networks with equally scalable open source solu-
tions, benefiting every one.

References
[1] net: phy: add Generic Netlink switch configuration API

https://www.spinics.net/lists/netdev/msg254794.html

[2] Mellanox Technologies Switch ASICs support
https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/drivers/net/ethernet/mellanox/mlxsw

[3] Ostinato Network Traffic Generator
http://ostinato.org/

