
Intel Public

AF_PACKET v4 and PACKET_ZEROCOPY
Magnus Karlsson and Björn Töpel, Intel

John Fastabend, Covalent IO

Intel Public Network Platforms Group

Legal Disclaimer

 Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer.

 No computer system can be absolutely secure.

 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit www.intel.com/benchmarks.

 Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and
configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost
reduction.

 All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps

 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

 ​Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced
web site and confirm whether referenced data are accurate.

 Intel, the Intel logo, and other Intel product and solution names in this presentation are trademarks of Intel.

 *Other names and brands may be claimed as the property of others.

 © 2017 Intel Corporation.

2

Intel Public Network Platforms Group

Motivation & Problem Statement

 Lots of good features

 AF_PACKET performance does not meet
application requirement

 High networking performance

 Hard to use

 Might lack lots of features

 Might have little to no integration with Linux

 Not part of Linux net subsystem in kernel.org

3

How can we combine the functionality and ease-of-use of AF_PACKET
sockets with the networking performance of these other solutions?

PF_RING Netmap

RDMA

Proprietary
HW SDK

Intel Public Network Platforms Group

Proposed Solution

 New fast packet interfaces in Linux

– AF_PACKET V4

– No system calls in data path

– Copy-mode by default

– True zero-copy mode with PACKET_ZEROCOPY,
DMA packet buffers mapped to user space

– HW descriptors only mapped to kernel

 ZC mode requires HW steering support for
untrusted applications

– Copy required otherwise

 Goal is to hit 40 Gbit/s line rate on a single
core for large packets and 30 Gbit/s for 64
byte packets

4

Intel Public Network Platforms Group

Results Summary

 Implemented V4 in af_packet.c

– Two new NDOs need to be implemented for PACKET_ZEROCOPY

– Introduced packet arrays to facilitate implementation

– Also gives you XDP support with ZC mode for free

 V4 + PACKET_ZEROCOPY 6-40x the throughput of V2 and V3 on an
I40E NIC

– 40 Gbit/s line rate for RX on one core for large packets

– TX and smaller packets not at line rate yet

– Optimization work required

 Should lessen the need for SR-IOV

5

Intel Public Network Platforms Group

Outline

 AF_PACKET V4

 PACKET_ZEROCOPY

 Implementation with Packet Arrays

 XDP Integration

 Performance results

 Future work

 Conclusions

6

Intel Public Network Platforms Group

Motivation AF_PACKET V4

 Support true zero-copy

 Eliminate copies for TX and buffering

 Transparrent error reporting on every packet, if desired

 Faster than V2 and V3

 Integrated with XDP

 If you implement ZC in a driver you should get XDP ”for free”

7

Intel Public Network Platforms Group

AF_PACKET V4 Format

 4 descriptors on a 64 byte cache line

 There is NO data header in V4 for performance reasons

 RX and TX can share the same packet buffer

8

1
RX

Descriptors

22
TX

Descriptors

Packet Buffer

0-9

10-19

20-29

30-39

struct tpacket4_desc {
__u32 idx;
__u32 len;
__u16 offset;
__u8 error;
__u8 flags;
__u8 padding[4];

};

struct tpacket4_queue {
struct tpacket4_desc *ring;

unsigned int avail_idx;
unsigned int last_used_idx;
unsigned int num_free;
unsigned int ring_mask;

};

Intel Public Network Platforms Group

How to Use It?

sfd = socket();

setsockopt(sfd, SOL_PACKET, PACKET_VERSION, PACKET_V4,);

setsockopt(sfd, SOL_PACKET, PACKET_MEMREG, &req, sizeof(req));

setsockopt(sfd, SOL_PACKET, PACKET_RX_RING, &req, sizeof(req));

setsockopt(sfd, SOL_PACKET, PACKET_TX_RING, &req, sizeof(req));

bind(sfd,”/dev/eth0”....);

setsockopt(sfd, SOL_PACKET, PACKET_ZEROCOPY, queue_pair, sizeof(int));

for (;;) {

read_messages(sfd, msgs,);

process_messages(msgs);

send_messages(sfd, msgs,); }

9

Intel Public Network Platforms Group

PACKET_ZEROCOPY: Basic Principle

 Application still HW agnostic with PACKET_ZEROCOPY

 Each application gets its own packet buffer and tx/rx queue pair

– Packet buffers can be shared if desired

10

App

NIC

Linux

RX TX Packets

RX TX Packets

Traditional

App

NIC

Linux

RX TX

PacketsRX TX

PACKET_ZEROCOPY

HW agnostic

Device dependent

Intel Public Network Platforms Group

Security and Isolation Requirements for ZC

 Important properties:

– User space cannot crash kernel or other processes

– User space cannot read or write any kernel data

– User-space cannot read or write any packets from other processes unless
packet buffer is explicitly shared

 Requirement for untrusted applications:

– HW packet steering, when there are packets with multiple destinations
arriving on the same interface

– If not available => kernel needs to own packet buffer and copy out data to
correct destination. Not true zero-copy anymore

11

Intel Public Network Platforms Group

Implementation Goals

 Making the implementation of ZC in the driver simple

 To abstract away the V4 descriptor format

– Same ZC driver code for SKBs, V2, V4, virtio-net, etc.

 To get XDP support for free when implementing ZC

12

Intel Public Network Platforms Group

Packet Arrays

 tp4a_* functions operate on packet arrays

 tp4f_* functions operate on frame sets

– Frame set can be one or more frames representing zero or more packets

 Also used in V4 af_packet.c code

13

In the control path:
rxa = tp4a_rx_new(rx_opaque, nb_elems, dev);
txa = tp4a_tx_new(tx_opaque, nb_elems, dev);

In the data path:
tp4a_populate(rxa);
while (tp4a_next_frame(rxa, p)) {

tp4f_set_frame(p, len, offset, eop);
}
tp4a_flush(rxa);

start curr end

Intel Public Network Platforms Group

Implementation Example: I40E

14

After RX IRQ:

while (tp4a_next_frame(rxa, p)) {
if (out_of_buffers_next_itr)

tp4a_populate(rxa);
dma_sync(p);
tp4f_set_frame(p, len, offset,

eop);
}
tp4a_flush(rxa);

In send syscall path:

tp4a_populate(txa);
while (tp4a_next_frame(txa, p)) {

if (no_space_on_tx_queue) {
tp4a_return_packet(txa, p);
break;

}
write_hw_tx_desc(p);

}

After TX IRQ:

tp4a_get_flushable_frame_set(txa, p);
while (tp4a_next_frame(txa, p)) {

clean_up_tx_hw_desc(p);
}
tp4a_flush(txa);

RX TX

Intel Public Network Platforms Group

Implementation Example: veth

 This code handles SKB -> V4, V4 -> SKB as well as V4 -> V4

– But this code is not in the current RFC 

– Can also handle SKB -> SKB, but not efficiently. Better use existing path
for that

15

tp4a_populate(my_tp4a_tx);
tp4a_populate(other_process_tp4a_rx);

tp4a_copy_packets(other_process_tp4a_rx, my_tp4a_tx);

tp4a_flush(other_process_tp4a_rx);
tp4a_flush(my_tp4a_tx);

Intel Public Network Platforms Group

XDP Support with Packet Arrays

 XDP is executed on tp4a_flush

– Goal to get XDP support under ZC for free
with packet arrays

– RFC: still one extra call for XDP

– Need support when ZC is disabled too

 XDP_PASS sends packet to V4 user space

– Still zero copy

16

Linux
App1

Cores + NICs

Linux
App2

Linux
App3

XDP

Linux NIC Driver

Intel Public Network Platforms Group

Experimental Setup

 Broadwell E5-2699 v4 @ 2.20GHz

 2 cores used for benchmarks

 Rx is a softirq (thread)

 Tx is driven from application via syscall

– TX and RX is currently in same NAPI context

– Item in backlog to make this a thread on third core

 One VSI / queue pair used on FVL. 40Gbit/s interface

 Ixia load generator blasting at full 40 Gbit/s

17

App

Core 1

RX

TX

Core 2

Intel Public Network Platforms Group

Performance I40E 64-Byte Packets

18

V2 V3 V4 V4 + ZC

rxdrop 0.67 Mpps 0.73 Mpps 0.74 Mpps 33.7 Mpps

txpush 0.98 Mpps 0.98 Mpps 0.91 Mpps 19.6 Mpps

l2fwd 0.66 Mpps 0.71 Mpps 0.67 Mpps 15.5 Mpps

tcpdump - 0.74 Mpps 0.74 Mpps 14.1 Mpps

 Zero-copy 20x – 40x faster than previous best on Linux

 Copy mode a mixed bag

 Not optimized yet though

– Still a syscall on TX

– TX colocated with RX

“Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration
may affect actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to http://www.intel.com/performance/datacenter.

Intel Public Network Platforms Group

Performance I40E 1500-Byte Packets

19

V2 V3 V4 V4 + ZC

rxdrop 0.56 Mpps 0.58 Mpps 0.66 Mpps 3.3 Mpps

txpush 0.81 Mpps 0.81 Mpps 0.88 Mpps 3.1 Mpps

l2fwd 0.55 Mpps 0.56 Mpps 0.62 Mpps 2.9 Mpps

tcpdump - 0.62 Mpps 0.64 Mpps 3.3 Mpps

 Zero-copy 40 Gbits/s line rate for RX workloads

– Not there yet for TX workloads

– Goal is 40 Gbit/s line rate for all these workloads

 V4 copy mode around 10% faster than V2 and V3

– Avoids copy on TX

“Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration
may affect actual performance. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information go to http://www.intel.com/performance/datacenter.

Intel Public Network Platforms Group

Discussion: Unifying XDP and ZEROCOPY

 Cumbersome to implement support for two techniques

 TX sides similar: V4 xmit = XDP xmit + XDP flush

 XDP support with packet arrays even when zero-copy is not enabled

– Buffers only allocated from the normal allocator in driver

 XDP_REDIRECT needs a destructor for V4 to work in zero-copy mode

– Currently a copy is needed 

20

int (*ndo_xdp)(struct net_device *dev,
struct netdev_xdp *xdp);

int (*ndo_xdp_xmit)
(struct net_device *dev,
struct xdp_buff *xdp);

void (*ndo_xdp_flush)
(struct net_device *dev);

int (*ndo_tp4_zerocopy)
(struct net_device *dev,
struct tp4_netdev_parms *parms);

int (*ndo_tp4_xmit)
(struct net_device *dev,
int queue_pair);

XDP V4

Intel Public Network Platforms Group

Possible XDP Extensions with AF_PACKET V4

 Descriptor rewriting in zero-copy path

– virtio-net support

– V2 support?

– Other formats?

– Needs an XDP program for TX!

 Load balancing

– More flexible than HW

 New action: XDP_PASS_TO_KERNEL

– NOTE: for untrusted applications you still
need HW packet steering

– Per ring XDP program might help

21

Linux
App1

Cores + NICs

Linux
App2

Linux
App3

XDP

Linux NIC Driver

Intel Public Network Platforms Group

RFC ToDo

 Investigate the user-space ring structure’s performance problems

 Continue the XDP integration into packet arrays

 Optimize performance

 SKB <-> V4 conversions in tp4a_populate & tp4a_flush

 Packet buffer is unnecessarily pinned for virtual devices

 Support shared packet buffers

 Unify V4 and SKB receive path in I40E driver

 Support for packets spanning multiple frames

 Disassociate the packet array implementation from the V4 queue structure

 ...and all things you will detect!

22

Intel Public Network Platforms Group

Future Work

 Get ready for a proper patch set

 More performance optimization work

 Implement zero-copy support for other devices

– Which ones?

 Try it out on real workloads

 Make send syscall optional and get TX off RX core

 Packet steering using XDP

 Metadata support, using XDP data_meta?

23

Intel Public Network Platforms Group

Acknowledgements

 Alexei Starovoitov, Alexander Duyck, and Jepser Dangaard Brouer for all your
feedback on the early RFCs

 Rami Rosen, Jeff Shaw, Ferruh Yigit, and Qi Zhang for your help with the
code, performance results and the paper

 The developers of RDMA, Netmap and PF_RING for the data path inspiration

24

Intel Public Network Platforms Group

Conclusions

 Introduced AF_PACKET V4 and PACKET_ZEROCOPY

 Packet arrays used to facilitate implementation

 Integrated with XDP

 V4 + zero-copy provides 6x to 40 x performance improvements compared to
V2 and V3 in our experiments on I40E NIC

 Still lots of performance optimization work to be performed

 Lots of exciting XDP extensions possibile in conjunction with V4

25

Intel Public

